
SAND94-1179

Unlimited Release

Printed October 1994

Distribution

Category UC-905

COYOTE -
A FINITE ELEMENT COMPUTER PROGRAM

FOR NONLINEAR HEAT CONDUCTION
PROBLEMS

PART II - USER’S MANUAL

Version 2.5

David K. Gartling and Roy E. Hogan

dkgartl@sandia.gov and rehogan@sandia.gov

Engineering Sciences Center

Sandia National Laboratories

Albuquerque, New Mexico 87185

ABSTRACT

User instructions are given for the finite element computer program, COYOTE. COY-

OTE is designed for the multi-dimensional analysis of nonlinear heat conduction problems

including the effects of enclosure radiation and chemical reaction. The theoretical back-

ground and numerical methods used in the program are documented in SAND94-1173.

Examples of the use of the code are presented in SAND94-1180.

Preface

At the time of release of the first version of COYOTE in mid-1978, it was not anticipated that
the code would receive the heavy usage that it currently enjoys. In response to user needs, the
original program has undergone several minor upgrades plus a major revision in the past several
years. In addition, a preliminary three-dimensional version of COYOTE was developed though
it was not formally documented. Continued requests for additional capabilities combined with
the significant changes in computer hardware and improved numerical algorithms have dictated
the need for a completely new version of the older codes. In rewriting the COYOTE program,
the two and three-dimensional codes have been combined into a single software package. The
present series of reports describe this latest version of the program package, COYOTE.

In an effort to make the programs more flexible and more generally applicable, a number
of new capabilities and features have been added to COYOTE. The element library has been
expanded to include linear and quadratic versions of all solid elements; specialty elements,
such as bars and shells, have also been included. To improve the performance of the solu-
tion algorithms, the direct matrix solution methods have been replaced by iterative methods
of the conjugate gradient type. Nonlinear steady-state solutions are obtained by a standard
Picard method augmented with a relaxation scheme. Transient analyses are performed with
a first-order, backward Euler method, a second-order, trapezoid rule or a first-order explicit
procedure. All the integration methods can be run with a fixed time step or a dynamic time
step selection procedure. The capability to perform surface-to-surface radiation in conjunction
with the heat conduction problem has also been added to the code. A significant effort has been
made to provide a rapid view factor capability for large problems; this capability can also be
accessed in a stand-alone mode through the radiation heat transfer code, CHAPARRAL. Also,
material motion, in either an Eulerian or Lagrangian frame, can be accommodated through user
input or through coupling with a solid mechanics code; material addition and deletion can be
simulated, if required. A general contact algorithm has been installed for use with both static
and dynamic problems. COYOTE has been extended to allow chemically reacting materials
to be considered, through the use of a stiff-solver package, CHEMEQ. Minor improvements in
the allowed material models and boundary condition types and dependencies have also been
incorporated in COYOTE. Input to the code has been redesigned to make more use of keywords
and simplify data preparation. The code is written in standard FORTRAN 77 to increase its
portability; machine dependent utilities are isolated in a portable library. Finally, new pre- and
post-processing file formats have been developed to permit stand-alone mesh generators and
graphics programs to be easily interfaced with the analysis package.

The contributions of several individuals to the testing and evaluation of early versions
of the code must be acknowledged. P. A. Sackinger (1511), J. F. Holland (6313) and R. S.
Longenbaugh (6313) provided significant help in testing Version 1.0 of COYOTE. Also, M.
B. Sirman (1511) generated the examples and documentation in Chapter 5 while debugging
Version 2.0.

iii

iv

Contents

Preface . iii

1 Introduction 1

2 Program Overview 3

2.1 Program Features . 3

2.2 Program Organization . 4

3 Input Guide 9

3.1 Input Syntax . 10

3.2 Title Data Block . 12

3.3 Material Data Block . 13

3.4 Problem Definition Data Block . 23

3.5 Solution Data Block . 37

3.6 Post-processing Data Block . 47

3.7 Time Function Data Block . 49

3.8 Variable Function Data Block . 50

3.9 User Constants Data Block . 51

3.10 Termination Data . 52

3.11 User Supplied Subroutines . 53

3.11.1 Material Properties . 53

3.11.2 Volumetric Sources . 62

3.11.3 Material Velocity . 64

3.11.4 Boundary Conditions . 65

3.12 Initial Conditions and Restarts . 73

3.13 Error Messages . 74

v

4 Code Installation and Access 77

4.1 FORTRAN Coding and System Dependencies 77

4.2 File Formats . 79

4.3 File Usage . 79

4.4 Access to the Code . 80

5 Example Problems 83

5.1 Problem 1 - Finned Radiator . 83

5.2 Problem 2 - Volume Heating in a Cylinder 86

5.3 Problem 3 - Surface Heating of a Plate 86

6 References 101

7 Appendices 103

Appendix A - Summary of Input Commands 105

Appendix B - Consistent Units . 115

Appendix C - Initial Time Step Estimation 117

Appendix D - Common Block and Array Storage 121

Appendix E - External Mesh Generator File Contents 149

Appendix F - Post-Processing File Contents 151

vi

List of Figures

2.1 Finite elements in the COYOTE library; the linear and quadratic version

of each element is available in the code. 5

2.2 Organization of the COYOTE code. 7

3.1 Coordinate system definition. 12

3.2 Notation for orthotropic conductivity tensor. 21

5.1 Schematic of finned radiator problem. 84

5.2 Finite element model for finned radiator. 85

5.3 Input file for COYOTE simulation of a finned radiator. 88

5.4 Temperature contours for finned radiator problem. 89

5.5 Schematic of volume heated cylinder problem. 90

5.6 Input file for COYOTE simulation of a volume heated cylinder. 91

5.7 User subroutine for COYOTE simulation of a volume heated cylinder. . . 92

5.7 Continuation of user subroutine for simulation of a volume heated cylinder. 93

5.8 Temperature histories for volume heated cylinder problem. 94

5.9 Schematic of plate heating problem. 95

5.10 Input file for COYOTE simulation of a surface heated plate. 96

5.11 User subroutine for COYOTE simulation of surface heated plate. 97

5.11 Continuation of user subroutine for simulation of a surface heated plate. . 98

5.12 Temperature contours for the surface heated plate problem. 99

7.1 Temperature ratio versus Fourier number for smaller Biot numbers. . . . 119

7.2 Temperature ratio versus Fourier number for larger Biot numbers. 120

vii

viii

Chapter 1

Introduction

The COYOTE computer code is a general purpose program package designed for the

solution of heat conduction problems and other types of diffusion problems. The code is

based on the Galerkin form of the finite element method (FEM). The present version of

COYOTE represents a significantly enhanced edition of the original program which was

first released in 1978.

The class of problems treated by COYOTE are basically those described by the stan-

dard heat conduction equation. The capability to simulate surface-to-surface radiation

in conjunction with the thermal conduction problem is also available in COYOTE; capa-

bilities for treating chemically reacting materials are supported in the software package.

Though specifically intended for the solution of heat conduction problems, the code can

be used for a wide variety of boundary and initial value problems. This generality stems

from the analogy between the heat conduction equation and other diffusion equations

encountered in engineering and physics. A partial list of application areas that are anal-

ogous to the heat conduction problem are listed below:

• Saturated or partially saturated flow in porous media

• Potential fluid flow

• Electrostatic fields

• Electric conduction

• Mass diffusion

• Lubrication flows

chapter 1.tex 1 Revision : 1.1

2 CHAPTER 1. INTRODUCTION

Many of these types of problems may be solved with COYOTE in either the steady-state

or transient form.

A significant effort has been made during the design and development of COYOTE

to create an analysis program that is easy to use. The basic code structure and many

of the programming features found in COYOTE have been developed and refined from

earlier versions of the program. The code has been written using standard FORTRAN

77 in an effort to increase its portability. COYOTE is one of a series of codes in the fluid

mechanics and heat transfer area [1,2], all of which share a common code structure and

input style. This feature allows a user ready access to a variety of analysis packages with

a minimum of time spent on learning input format conventions.

The present document is intended to provide a detailed description of the input data

necessary to access and execute the present version of the COYOTE code. The theoretical

basis for the code and many of the numerical procedures used in the program are described

in a companion document [3]. A detailed description of the use of the code on various

verification, heat transfer and diffusion problems is provided in [4].

In the next chapter, a brief description of the program capabilities and organization

is provided. Chapter 3 describes the input to the program; the penultimate chapter

provides a discussion of programming and installation details. Several short example

problems are included in Chapter 5 to illustrate typical input data files.

Revision : 1.1 chapter 1.tex

Chapter 2

Program Overview

The development of a reasonably efficient computer code for heat conduction or diffu-

sion problems requires that the limits of applicability of the program be specifically and

carefully defined. The present description is intended only as an overview of the major

assumptions, capabilities and features of the program; a more complete outline of code

limitations is provided in [3]. Brief chapters are also included to show the major organi-

zational components of the program and to provide some of the background information

that is a prerequisite to successful use of the code.

2.1 Program Features

COYOTE is intended for the analysis of heat conduction or other similar types of diffusion

problems. Geometrically, this version of the program is appropriate for treating two-

dimensional, plane or axially symmetric problems and fully three-dimensional analyses.

The theoretical formulation assumes isotropic or orthotropic behavior for all materials.

Further, the materials of interest may be heterogeneous with properties that vary in a

quite general manner with spatial location, time and/or temperature and composition.

Materials defined in the problem may undergo chemical reactions, the nature of which

is quite arbitrary. Volumetric source terms may also be defined and allowed to vary in a

general manner. The problems may be either independent of time or fully time-dependent

in nature.

Boundary condition specification is very general and allows all of the standard types

of thermal conditions to be imposed on a problem. Temperatures or heat fluxes may

be specified as well as conditions representing convective and radiative exchange with a

chapter 2.tex 3 Revision : 1.1

4 CHAPTER 2. PROGRAM OVERVIEW

surrounding environment. Radiative heat transfer across enclosures or between surfaces

can also be included, subject to a few standard assumptions regarding radiation wave

length and surface properties [3]. All boundary conditions may be general functions of

spatial location, time and/or temperature. Material motion, in either an Eulerian or

Lagrangian coordinate frame, can be simulated as well as the removal or addition of

material. A general surface contact capability is also provided.

COYOTE relies on specialized external codes for mesh generation and graphical pro-

cessing of solution data. Mesh data and output for graphical processing are read and

written by COYOTE in a standard, well documented format that allows easy coupling

with other programs. The data analysis portions of the code allow local heat fluxes and

energy balances to be computed. A facility also exists for reporting results at arbitrary

points within the domain in addition to nodal locations.

Two other essential parts of COYOTE are the element library and the solution pro-

cedures for the finite element equations. The element library is illustrated in Figure 2.1

and includes isoparametric quadrilaterals and triangles for two-dimensional applications

and isoparametric tetrahedrons, wedges and hexahedrons for three-dimensional simula-

tions. Specialty elements, such as bars and shells, are also available. Within each of these

elements, the temperature is approximated using either linear or quadratic basis func-

tions. For the analysis of time-independent problems, COYOTE provides the user with a

choice of several variants of a Picard iteration scheme. A Newton algorithm is available,

as an option, for the solution of coupled enclosure radiation and conduction problems.

Transient problems are analyzed using either of two implicit integration schemes – a

first-order, Euler method or a second-order trapezoid rule. Both integrators may be used

in a predictor/corrector mode with a fixed timestep or a dynamic timestep algorithm.

A first-order, explicit integration method is also available for use with similar types of

timestep control. Details of these methods and their implementation can be found in [3].

2.2 Program Organization

COYOTE has been organized in a modular form in an effort to make the operation of the

code understandable and to ease the task of code modification. As shown in the schematic

of Figure 2.2, the code consists of a main program plus a number of major, task-oriented

subroutines. Each of the major subroutines may access one or more subordinate routines

plus the utilities attached to the main program.

Input to the program is organized into six distinct blocks that correspond to major

tasks within the code. Within each block, keyword data is specified in a free-field format;

Revision : 1.1 chapter 2.tex

2.2. PROGRAM ORGANIZATION 5

Figure 2.1: Finite elements in the COYOTE library; the linear and quadratic version of

each element is available in the code.

chapter 2.tex Revision : 1.1

6 CHAPTER 2. PROGRAM OVERVIEW

data within the block may be ordered arbitrarily. A list of the six major data blocks, their

associated keywords (with accepted abbreviations indicated), and a brief description of

their function is given below.

• Title Data Block (TITle) - specifies problem title and comments

• Material Data Block (MATerial) - specifies material property data

• Problem Definition Data Block (PROBlem DEFinition) - specifies problem type,

element block properties, boundary conditions and simulation options

• Solution Data Block (SOLution) - specifies solution method and options

• Post-processing Data Block (POST) - specifies post-processing output and options

• Function Data Block (TIME FUNction, VARiable FUNction, USER CON-

stants) - specifies function data and user defined constants

The large amount of data needed for a typical finite element analysis is handled in

COYOTE by a combination of disk files and in-core memory. Data that is repeatedly

required by several of the major subroutines (e.g., nodal point coordinates, nodal point

connectivity and current solution vectors) are stored in main memory. The in-core stor-

age scheme makes use of a dynamic memory algorithm that allocates needed array space

during program execution. Less frequently needed data (e.g., input data file) and ex-

tremely large blocks of data (e.g., previous solution vectors and viewfactors) may be

stored on various disk files. The utilization of the files shown in Figure 2.2 is discussed

in Section 4.3.

Revision : 1.1 chapter 2.tex

2.2. PROGRAM ORGANIZATION 7

Figure 2.2: Organization of the COYOTE code.

chapter 2.tex Revision : 1.1

8 CHAPTER 2. PROGRAM OVERVIEW

Revision : 1.1 chapter 3.tex

Chapter 3

Input Guide

The structure of an input data file for the COYOTE program directly reflects the steps

required to formulate, solve and analyze a finite element model for a heat conduction or

diffusion problem. Input to the code consists of four types of cards 1: a) Commentary

cards, b) Data Block cards, c) Data cards and d) Termination cards. Input on any given

card is in a free-field format style with the first entry usually being a keyword. Comments

may appear at any point within the input file; this type of data is echoed to the output

file but is otherwise ignored by the code. Data block cards and termination cards occur

in pairs and bracket a series of data cards. The order in which data block cards appear

in the input file is arbitrary. Data block cards may appear as many times as necessary

within an input file but must always be closed by a termination card. Data cards within

a data block may be ordered arbitrarily except for function data, which must appear in

a logical, ascending order.

Data that is provided to COYOTE is previewed by the code in an effort to uncover

obvious errors. All keywords are reviewed for syntax, proper termination of each data

block is checked and the presence of all mandatory data blocks is verified. This data scan

also serves to set certain critical sizing parameters needed for proper program execution.

The data block cards recognized by COYOTE are listed below in the order in which

they are discussed in the subsequent chapters. This is also the order in which they would

normally appear in a typical input file. A summary showing the form and content of the

indicated data block cards and associated data cards is provided in Appendix A.

• Title Data Block

1Notice that throughout this manual input data is referred to in terms of “cards”; this is a convenient
term that in actuality refers to a record on an input device.

chapter 3.tex 9 Revision : 1.1

10 CHAPTER 3. INPUT GUIDE

• Material Data Block

• Problem Definition Data Block

• Solution Data Block

• Post-processing Data Block

• Time and Variable Function Data Blocks

• User Constants Data Block

• Termination Data

3.1 Input Syntax

The COYOTE input cards generally follow the standard format shown below:

KEYWORD=parameter1, parameter2, . . .

In some cases a keyword does not require any additional data and the parameter list is

omitted.

In describing the input data, the following conventions have been adopted for the

following sections:

(a) Bold face words indicate keywords, e.g., MATerial. Most keywords can be abbre-

viated to the first 3-5 characters of each word. Upper case characters indicate the

shortest abbreviation that is recognized by the code.

(b) Keyword data that is required for the proper specification of a problem and is

mandatory for all input files is flagged with a 2 symbol at the right hand margin.

(c) Upper case words indicate a required alphanumeric input value, e.g., USER. Most

alphanumeric input can be abbreviated to the first 3-5 characters of each word.

Upper case characters indicate the shortest abbreviation that is recognized by the

code.

(d) Lower case words and symbols imply that an alphanumeric or numerical value for

the specified variable is expected, e.g., tmax.

Revision : 1.1 chapter 3.tex

3.1. INPUT SYNTAX 11

(e) All input values are specified in a free field format with successive variables sepa-

rated by commas, equal signs or blanks. A convenient convention that is used in

this manual uses blanks within keywords, equal signs to separate keywords from

variable lists and commas for separating variables.

(f) The total number of input values allowed on any single input card (including all

continuation cards) is presently limited to 50.

(g) Each alphanumeric input value is limited to twenty characters under the free-field

format.

(h) The $ character may be used to end an input card, with the remaining space on

the card then being available for comments. A $ character at the beginning of a

line indicates a full comment line that is ignored by the code during execution.

(i) The * character may be used to continue an input line onto the next data card.

The continuation character should follow the last delimiter (comma or equal sign)

on the card to be continued.

(j) Italics indicate optional parameters which may be omitted by using successive de-

limiters (commas or equal signs) in the input line. If the omitted parameter is not

followed by any required parameters, no additional delimiters need be specified.

(k) () indicates the data type for a particular input variable, i.e., alphanumeric or

character (C), real (R) or integer (I).

(l) < > indicates the default value for an optional parameter.

(m) The contents of each input line are indicated by underlining.

(n) All quantities associated with a coordinate direction are expressed in terms of

the cartesian x, y or x, y, z coordinate system. The corresponding quantities for

axisymmetric problems are obtained by the association of the radial coordinate, r,

with x and the axial coordinate, z, with y. The global coordinate system used by

the code is right-handed, as indicated in the sketch shown in Figure 3.1.

(o) Expanatory notes for various input options and data are numbered consecutively

within a chapter and are located at the end of each Data Block.

chapter 3.tex Revision : 1.1

12 CHAPTER 3. INPUT GUIDE

Figure 3.1: Coordinate system definition.

3.2 Title Data Block

The title data block allows the specification of an appropriate problem title and any

additional commentary that is useful in documenting the simulation. This data block is

optional. The title data block has the following form:

TITle

THIS IS AN EXAMPLE OF A PROBLEM TITLE

.

.

THESE ARE EXAMPLES OF SUBTITLE LINES

UP TO 10 LINES OF PROBLEM DESCRIPTION MAY

BE INCLUDED ON THESE CARDS

.

.

.

ENDtitle

Revision : 1.1 chapter 3.tex

3.3. MATERIAL DATA BLOCK 13

The first line following the TITle keyword is taken as the problem title and is written

to various output files to assist in the identification of a particular code execution. Fol-

lowing the title card, a number of subtitle or comment cards may be included to provide

a description of the particular problem, modeling assumptions, material models, etc..

Up to 10 subtitle lines may be specified. The commentary lines are reproduced at the

beginning of the printed output file as problem documentation. The title data block is

terminated with an END card.

3.3 Material Data Block

The input of material properties to COYOTE is accomplished through the material data

block and its associated set of data cards. A separate material data block is required for

each material used in a COYOTE simulation. Input of material data for each block is

terminated by an END card. The material data block is of the following form:

MATerial, material name, material model 2

.

.

Material Property Data

.

.

.

ENDmaterial 2

where

material name (C) : is a required material name (see Note 1).

material model (C) <ISOtropic> : is the type of material model used to describe the

thermal conductivity. When this parameter is omitted or set to ISOtropic, the

material is modeled as isotropic with kij = kδij; a parameter value of ORTHotropic

indicates a material with a full conductivity tensor kij (see Note 2).

Material Property Data

Thermophysical property data for each material is specified by a series of data cards

within the data block. Each property data card begins with a property keyword and is

followed by the numerical value of the material property or an option that directs the

chapter 3.tex Revision : 1.1

14 CHAPTER 3. INPUT GUIDE

code to evaluate the property through a function or a user subroutine. Note that when

a material is defined as a reactive material, the relevant chemical kinetic data must be

specified for all of the (I) species and (J) reactions that describe the reactive behavior

of the mixture. Thermophysical properties that depend on chemical composition should

be evaluated through the user subroutine option where species concentration data is

readily available. Endothermic or exothermic heat release due to chemical reaction is

automatically accounted for when a reactive mixture is defined and need not be defined

through the volume heating property for the material.

COYOTE does not contain any dimensional constants and, therefore, the units for

the material properties are free to be chosen by the user. For convenience, a table of

consistent units is given in Appendix B.

The individual material data cards recognized by COYOTE are listed below along

with the various options available for each property.

DENsity=ρ

DENsity=USER

DENsity=VFUNction, idvar

ρ (R) <0.0> : specifies the value of the density.

USER (C) : specifies that the density will be evaluated by a user supplied subrou-

tine, USRDEN.

VFUNction (C) : specifies that the density will be evaluated via a variable function

(see Note 3).

idvar (I) : sets the variable function identification number (see Note 3).

SPECific HEAT=Cp

SPECific HEAT=USER

SPECific HEAT=VFUNction, idvar

Cp (R) <0.0> : specifies the value of the specific heat.

USER (C) : specifies that the specific heat will be evaluated by a user supplied

subroutine, USRCP.

VFUNction (C), id (I) : specifies that the specific heat will be evaluated via a vari-

able function (see Note 3).

Revision : 1.1 chapter 3.tex

3.3. MATERIAL DATA BLOCK 15

idvar (I) : sets the variable function identification number (see Note 3).

CONDuctivity=k11, k22, k33 2

CONDuctivity=USER 2

CONDuctivity=VFUNction, idvar1, idvar2, idvar3 2

k11, k22, k33 (R) : specify the values of the principle components of the thermal

conductivity tensor. If the material is isotropic only the first value, k11, is

required; orthotropic materials in two-dimensional problems only require the

first two components of the tensor k11 and k22, to be specified (see Note 2).

USER (C) : specifies that the principle components of the conductivity tensor will

be evaluated by a user supplied subroutine, USRCON (see Note 2).

VFUNction (C) : specifies that the principle components of the conductivity tensor

will be evaluated via one or more variable functions (see Notes 2 and 3).

idvar1, idvar2, idvar3 (I) : set the variable function identification numbers for each

of the principle components of the thermal conductivity tensor. If the mate-

rial is isotropic only the first function idvar is required; orthotropic materials

in two-dimensional problems only require the first two function idvars to be

specified. Components with the same functional behavior may share a single

function specification (see Note 3).

TENsor ROTation=xx̂, yx̂, zx̂, xŷ, yŷ, zŷ

TENsor ROTation=USER

xx̂, yx̂, zx̂, xŷ, yŷ, zŷ (I or R) <1,0,0,0,1,0> : represent the orientation of the prin-

ciple material axes with respect to the global coordinate system. The six com-

ponents specify the projection of the x̂ and ŷ principle material axes for the

conductivity tensor onto the global coordinate axes (see Note 2).

USER (C) : specifies that the local orientation of the conductivity tensor will be

evaluated by a user subroutine, USRROT (see Note 2).

LATent HEAT=L

L (R) <0.0> : specifies the value of the latent heat of fusion for the material

SOLidus TEMPerature=Tsol

chapter 3.tex Revision : 1.1

16 CHAPTER 3. INPUT GUIDE

Tsol (R) <0.0> : specifies the solidus temperature for the material

LIQuidus TEMPerature=Tliq

Tliq (R) <0.0> : specifies the liquidus temperature for the material

ENTHalpy=USER

ENTHalpy=VFUNction, idvar

USER (C) : specifies that the enthalpy for the material will be evaluated by a user

supplied subroutine, USRENT (see Note 4).

VFUNction (C) : specifies that the enthalpy for the material will be evaluated via

a variable function (see Notes 3 and 4).

idvar (I) : sets the variable function identification number (see Note 3).

PHASe CHANge=property, derivative method

property (C) <SPECific HEAT> : specifies the material property that is used to

evaluate the effective specific heat during a material change of phase. If this

parameter is set to SPECific HEAT or left blank, the effective specific heat

is computed from the latent heat value and the specified liquidus and solidus

temperatures. A parameter setting of ENTHalpy causes the effective specific

heat to be derived from the enthalpy specification. Note that the inclusion

of the PHASe CHANge data card automates the inclusion of latent heat

effects for the material. Phase change behavior could also be included directly

through the proper manipulation of the SPECific HEAT function; use of an

enthalpy function requires the PHASe CHANge procedure (see Note 4).

derivative method (C) <SPATial> : defines the method for computing the deriva-

tive of the enthalpy versus temperature function when the ENTHalpy option

for phase change is specified. If this parameter is set to SPATial or left blank,

spatial gradients of the enthalpy and temperature are used to compute the

effective specific heat. A parameter setting of TIME causes time derivatives

of the enthalpy and temperature to be used to evaluate the effective specific

heat (see Note 4).

EMISsivity=ε

EMISsivity=USER

Revision : 1.1 chapter 3.tex

3.3. MATERIAL DATA BLOCK 17

EMISsivity=VFUNction, idvar

ε (R) <0.0> : specifies the value of the surface emissivity.

USER (C) : specifies that the surface emissivity will be evaluated by a user supplied

subroutine, USREMS.

VFUNction (C) : specifies that the surface emissivity will be evaluated via a variable

function (see Note 3).

idvar (I) : sets the variable function identification number (see Note 3).

VOLume HEATing=Q

VOLume HEATing=USER

VOLume HEATing=TFUNction, idtim

VOLume HEATing=VFUNction, idvar

Q (R) <0.0> : specifies the value of the volumetric heat source.

USER (C) : specifies that the volumetric heat source will be evaluated by a user

supplied subroutine, USRVHS.

TFUNction (C) : specifies that the volumetric heat source will be evaluated via a

time function (see Note 3).

idtim (I) : sets the time function identification number (see Note 3).

VFUNction (C) : specifies that the volumetric heat source will be evaluated via a

variable function (see Note 3).

idvar (I) : sets the variable function identification number (see Note 3).

INITial TEMPerature=Tinit

Tinit (R) <0.0> : specifies the initial temperature for the material

REACtive MIXture=nspecies, nreactions, USER

nspecies (I) : specifies the number of species to be defined for this material (see

Note 5).

nreactions (I) : specifies the number of chemical reactions to be defined for this

material (see Note 5).

SPECies=name1, name2, . . . , namenspecies

chapter 3.tex Revision : 1.1

18 CHAPTER 3. INPUT GUIDE

name1 . . .namenspecies (C) : are the names of the chemical species defined for this

material (see Notes 6 and 7).

SPECies PHASe=phase1, phase2, . . . , phasenspecies

phase1 . . .phasenspecies (C) : are the phases of

each of the species for this material. The permissible phases are GAS or

CONDensed (see Note 10).

FRACtion CONDensed= frac

frac (R) : is the condensed fraction of this material (see Note 10).

INITial CONcentration=N0
1 , N0

2 , . . . , N0
nspecies

N0
1 . . .N0

nspecies (R) <0.0> : specify the initial concentrations of the species for this

material (see Note 7).

MINimum CONcentration=Nmin
1 , Nmin

2 , . . . , Nmin
nspecies

Nmin
1 . . .Nmin

nspecies (R) <1.0E-8> : specify the minimum allowed concentrations of

the species for this material (see Note 7).

STERic COEFficients=β1, β2, . . . , βnreaction

β1 . . . βnreaction (R) : specify the coefficients for the steric factors in the reactions

defined for this material (see Note 7).

PREexponential FACTor=A1, A2, . . . , Anreaction

A1 . . . Anreaction (R) : specify the pre-exponential factors in the reactions defined for

this material (see Notes 7 and 8).

LPREexponential FACTor=lnA1, ln A2, . . . , ln Anreaction

ln A1 . . . ln Anreaction (R) : specify the natural logarithm of pre-exponential factors

in the reactions defined for this material (see Notes 7 and 8).

ACTivation ENERgy=E1, E2, . . . , Enreaction

Revision : 1.1 chapter 3.tex

3.3. MATERIAL DATA BLOCK 19

E1 . . . Enreaction (R) : specify the activation energies in the reactions defined for this

material (see Note 7).

ENERgy RELease=q1, q2, . . . , qnreaction

q1 . . . qnreaction (R) : specify the endothermic or exothermic energy release in the

reactions defined for this material (see Note 6). The energy release data

must have the correct sign to distinguish an exothermic reaction from an en-

dothermic reaction. The standard convention in COYOTE requires that heat

addition (exothermic reaction) to a material be postive and heat extraction

(endothermic reaction) from a material be negative.

CONcentration EXPonents, species no.=µi1, µi2, . . . , µi,nreaction

species no. (I) : specifies the species number (i) for the exponent data

µi1 . . . µi,nreaction (R) : specify the concentration exponents for the (ith) species and

reactions defined for this material (see Note 7).

STOichiometric COEFficients, species no.=νi1, νi2, . . . , νi,nreaction

species no. (I) : specifies the species number (i) for the stoichiometric data

νi1 . . . νnspec,nreaction (R) : specify the stoichiometric coefficients for the (ith) species

and reactions defined for this material (see Note 7).

CHEMistry ACTivation TEMPerature=Tchem

Tchem (R) <0.0> : sets the threshold temperature above which the reaction kinetics

are activated in the solution process (see Note 9).

Notes:

1) The material name assigned to each material data block must be unique. This name

is also used in the problem definition chapter (see Section 3.4) to allow material

properties to be associated with individual blocks of elements. One and only one

set of material property data cards should be supplied for each material name. No

abbreviations of the name are allowed; the name must be less than 20 characters.

chapter 3.tex Revision : 1.1

20 CHAPTER 3. INPUT GUIDE

2) The material models allowed in COYOTE include materials with either an isotropic

or orthotropic conductivity tensor. For isotropic materials, kij = k, and the con-

ductivity is specified completely by setting the value of the scalar k. Temperature

dependence of the isotropic conductivity can be implemented via a variable function

or a user supplied subroutine. Bar elements are limited to an isotropic conductivity

model. For orthotropic materials, kij is defined as δijkij = kii, and the conductivity

is determined by specifying the components of the tensor with respect to the princi-

ple material axes. Temperature dependence for each of the principle conductivities

can be specified independently through the variable functions or a user subroutine.

If the principle material axes are not aligned with the global coordinate axes then

the TENsor ROTation data card must be used to supply the appropriate coordi-

nate transformation (rotation). Referring to Figure 3.2, the x̂, ŷ and ẑ axes indicate

the principle material axes while x, y, and z denote the global reference frame. The

parameters xx̂, yx̂, zx̂ on the TENsor ROTation data card refer respectively to

the x, y, z projections of a vector in the positive x̂ direction. Similarly, the parame-

ters xŷ, yŷ, zŷ refer to the x, y, z projections of a vector in the positive ŷ direction.

Note that these vectors (x̂, ŷ) need not be unit vectors. For two-dimensional appli-

cations only the xx̂, yx̂ projections need to be specified for a vector in the positive x̂

direction. To illustrate the definition of a tensor rotation, a 45◦ rotation about the

y axis is specified by 〈xx̂, yx̂, zx̂〉 = 〈1, 0, 1〉 and 〈xŷ, yŷ, zŷ〉 = 〈0, 1, 0〉. Rotations

defined by parameters on the TENsor ROTation card are applied uniformly to

all elements with the given material name. If the tensor rotation is required to vary

with spatial location and must be computed on an element-by-element basis, then

the user subroutine, USRROT, must be employed (see Section 3.11.1).

3) Material data that has a simple functional dependence on temperature or time

will usually be specified via a variable function (VFUNction) or a time function

(TFUNction). The correspondence between each material property and the ap-

propriate function is determined from the integer identification (idvar or idtim)

number. Within each catagory of function, the id must be unique. Function defi-

nitions are described in Sections 3.7 and 3.8. For material data that has a complex

functional form or depends on chemical composition, a user subroutine is recom-

mended.

4) Latent heat release during a material change of phase may be specified by any

of several methods, two of which are available through the PHASe CHANge

specification. In the specific heat method, the input latent heat, L, is divided by

the liquidus and solidus temperature difference, Tliq−Tsol, to generate an equivalent

specific heat function. This equivalent specific heat is added to the base specific

heat specified by the SPECific HEAT card to produce a function that is valid

over the phase change temperature range. A second option allows the enthalpy for

Revision : 1.1 chapter 3.tex

3.3. MATERIAL DATA BLOCK 21

Figure 3.2: Notation for orthotropic conductivity tensor.

the material to be input as a function of temperature. In this case a numerical

derivative of the enthalpy function with respect to temperature is used to define

an effective specific heat. For this option the enthalpy must be defined over the

entire temperature range for the problem and the specific heat card is not used.

Two methods for computing the local slope of the enthalpy versus temperature

function are included in COYOTE; these methods are explained in detail in [3].

Other methods for including latent heat release are possible and do not involve

the PHASe CHANge specification. The SPECific HEAT input can be defined

such that latent heat is accounted for in the functional definition; either a variable

function or a user subroutine can be used for this type of definition. The effects

of latent heat release could also be included as part of a temperature-dependent,

volumetric heat release. Again, a variable function or user subroutine could be used

for this definition under the VOLume HEATing input. Details and cautions for

the use of these methods can be found in [3,4].

5) The number of species and reactions that can be defined for any material is currently

limited to 45. This limit may be increased by altering the number of data fields

read by the free field reader.

6) The species defined for all reactive materials must have globally unique names so

that they may be correctly identified in the post-processing file. Specie names may

chapter 3.tex Revision : 1.1

22 CHAPTER 3. INPUT GUIDE

be 20 characters long, however, only the first 8 characters are used for checking

uniqueness.

7) In specifying chemical kinetic data the order of the data entries is important.

Species data must always be ordered in the same sequence from 1 to nspecies

and must correspond to the ordering set by the names of the species under the

SPECies card. Reaction data must always be ordered in the same sequence from 1

to nreaction where the sequence is set (implicitly) by the user. For two-dimensional

data arrays, such as the concentration exponents and the stoichiometric coefficients,

the data entry is sequenced from 1 to nreaction with a separate card for each

species.

8) The pre-exponential factors for a reactive mixture may be specified in either of two

forms. The PREexponential FACTor format allows this data to be specified

directly; the LPRExponential FACTor format allows the natural log of the pre-

exponential factors to be input. This latter format permits smaller numbers to be

input and lessens the chance for data errors.

9) For simulations involving chemical reactions, the reaction rates and heat generation

are strongly coupled to the temperature level within the material. In many situa-

tions, the temperature rise in the material is slow and the chemical reactions are not

significant until late in the process when some critical temperature level is reached.

The CHEMistry ACTivation TEMPerature parameter sets a threshold tem-

perature, by material, for the activation of the chemical reaction equations. Prior

to the nodal point temperatures within an element reaching Tchem, the chemistry

computations for the element are skipped with the species concentrations remain-

ing at their initial values. When any nodal temperature within an element reaches

the specified threshold, all chemistry computations are performed for the element.

10) For simulations involving chemical reactions, the reacted gas fraction can be com-

puted and made available for post processing or for input to a reactive constitutive

model in a solid mechanics code. The gas fractions are computed for each element

in a reactive material at the chemistry points (integration points). The computa-

tion of gas fractions is specified by the presence of a SPECies PHASe card for

any reactive material. Both a SPECies PHASe card and a FRACtion CON-

Densed card must be present for each reactive material. The gas fractions (at

element centroids) can be output to the post-processing EXODUS file by including

GASFrac as a parameter on the CHEMistry DATA card in the post processing

data block.

Revision : 1.1 chapter 3.tex

3.4. PROBLEM DEFINITION DATA BLOCK 23

3.4 Problem Definition Data Block

The problem definition data block is used to define the general attributes of the heat

conduction problem that is to be solved. Normally, only one such data block is required.

Input of problem definition parameters is terminated by an END card. The problem

definition data block is of the following form:

PROBlem DEFinition, format 2

.

.

Problem Definition Data

.

.

.

ENDproblem 2

where

format (C) <EXOdus> : is the name of the format used to provide mesh data to COY-

OTE. Currently the only supported data format is the EXODUS II format [6].

Problem Definition Data

The setting of various program and modeling options is accomplished through a series

of data cards within the problem definition data block. Each option begins with a keyword

and may be followed by one or more parameters that define the option. The individual

problem definition data cards recognized by COYOTE are listed below with the various

parameter choices.

GEOMetry=type 2

type (C) : specifies the type of geometry used in the heat conduction problem.

The type parameter should be set to 2D for planar, two-dimensional mod-

els, AXIsym for axisymmetric, two-dimensional models or 3D for fully three-

dimensional models.

ELEMent BLOCk= block id, material name, integration rule 2

chapter 3.tex Revision : 1.1

24 CHAPTER 3. INPUT GUIDE

block id (I) : specifies the previously assigned identifier for a block of elements in

the mesh. The elements within this block are expected to all be the same

material and be the same type of finite element (see Note 1).

material name (C) : specifies the material name for the element block. This identi-

fier should correspond to one of the names used on the MATerial data block

card.

integration rule (I) : specifies the integration (quadrature) rule used to construct

the finite element coefficient matrices (see Note 2).

BCtype=bcname, nodeset id, bc specification, mfactor

bcname (C) : specifies the name for the type of boundary condition applied to

a node set. The permissable node set boundary conditions are TEMPera-

ture and HEAT SOURce (see Note 3). Note that the HEAT SOURce option

specifies a (nodal) point source of energy and should therefore have units of

energy/time.

nodeset id (I) : specifies the previously assigned node set identifier for a group of

boundary conditions (see Note 3).

bc specification : specifies the method for evaluating the boundary condition. This

parameter may be replaced with any of the following:

bcvalue (R) : the constant value of the boundary condition.

USER (C) : the boundary condition will be evaluated by a user supplied sub-

routine. The subroutine for the TEMPerature boundary condition is USRT

and the subroutine for the HEAT SOURce is USRQ.

TFUNction (C), idtim (I) : the boundary condition will be evaluated via a

time function with time function identification number, idtim (see Note 5).

VFUNction (C), idvar (I) : the boundary condition will be evaluated via a

variable function with variable function identification number, idvar (see

Note 5). This parameter choice is only available for the HEAT SOURce

boundary condition.

mfactor (R) <1.0> : is a multiplying factor that is applied to the value of the

boundary condition. This factor is not used with the user subroutine option.

BCtype=bcname, sideset id, bc specification, mfactor

bcname (C) : specifies the name for the type of boundary condition applied to a

side set. The permissable side set boundary condition for this format is HEAT

FLUX (see Note 4).

Revision : 1.1 chapter 3.tex

3.4. PROBLEM DEFINITION DATA BLOCK 25

sideset id (I) : specifies the previously assigned side set identifier for a group of

boundary conditions (see Note 4).

bc specification : specifies the method for evaluating the boundary condition. This

parameter may be replaced with any of the following:

bcvalue (R) : the constant value of the boundary condition.

USER (C) : the boundary condition will be evaluated by a user supplied sub-

routine, USRFLX.

TFUNction (C), idtim (I) : the boundary condition will be evaluated via a

time function with time function identification number, idtim (see Note 5).

VFUNction (C), idvar (I) : the boundary condition will be evaluated via a

variable function with variable function identification number, idvar (see

Note 5).

mfactor (R) <1.0> : is a multiplying factor that is applied to the value of the

boundary condition. This factor is not used with the user subroutine option.

BCtype=bcname, sideset id, COEFficient = coef specification, mfactor,

TREFerence = ref specification, mfactor

bcname (C) : specifies the name for the type of boundary condition applied to a

side set. The permissable side set boundary conditions for this format are

CONVection and RADiation (see Note 4).

sideset id (I) : specifies the previously assigned side set identifier for a group of

boundary conditions (see Note 4).

coef specification : specifies the method for evaluating the convection heat transfer

coefficient or radiation heat transfer form factor. This parameter may be

replaced with any of the following:

cvalue (R) : the constant value of the coefficient or form factor.

USER (C) : the coefficient or form factor will be evaluated by a user supplied

subroutine, USRHTC or USRFF.

TFUNction (C), idtim (I) : the coefficient or form factor will be evaluated via a

time function with time function identification number, idtim (see Note 5).

VFUNction (C), idvar (I) : the coefficient or form factor will be evaluated via

a variable function with variable function identification number, idvar (see

Note 5).

mfactor (R) <1.0> : is a multiplying factor that is applied to the value of the

coefficient or form factor. This factor is not used with the user subroutine

option.

chapter 3.tex Revision : 1.1

26 CHAPTER 3. INPUT GUIDE

ref specification : specifies the method for evaluating the reference temperature for

convection or radiation. This parameter may be replaced with any of the

following:

tvalue (R) : the constant value of the reference temperature.

USER (C) : the reference temperature will be evaluated by a user supplied

subroutine, USRTRC or USRTRR.

TFUNction (C), idtim (I) : the reference temperature will be evaluated via a

time function with time function identification number, idtim (see Note 5).

VFUNction (C), idvar (I) : the reference temperature will be evaluated via a

variable function with variable function identification number, idvar (see

Note 5).

mfactor (R) <1.0> : is a multiplying factor that is applied to the value of the

reference temperature. This factor is not used with the user subroutine option.

BCtype=bcname, SURFace=sideset id1, SURFace=sideset id2,

COEFficient = coef specification

BCtype=bcname, BLOCk=block id1, SURFace=sideset id1,

COEFficient = coef specification

BCtype=bcname, BLOCk=block id1, BLOCk=block id2,

COEFficient = coef specification

bcname (C) : specifies the name for the type of boundary condition applied between

element blocks, side sets or an element block and a side set. The permissable

boundary condition for this format is CONTact (see Note 6).

sideset id1, sideset id2 (I) : specifies the previously assigned side set identifiers for

two groups of boundary conditions (see Note 6).

block id1, block id2 (I) : specifies the previously assigned element block identifiers

for two element blocks (see Note 6).

coef specification : specifies the method for evaluating the contact or gap heat trans-

fer coefficient. This parameter may be replaced with any of the following:

cvalue (R) : the constant value of the coefficient.

USER (C) : the coefficient will be evaluated by a user supplied subroutine,

USRHTG.

TFUNction (C), idtim (I) : the coefficient will be evaluated via a time function

with time function identification number, idtim (see Note 5).

Revision : 1.1 chapter 3.tex

3.4. PROBLEM DEFINITION DATA BLOCK 27

VFUNction (C), idvar (I) : the coefficient will be evaluated via a variable func-

tion with variable function identification number, idvar (see Note 5).

BCtype=bcname, sideset id, enclosure no.

bcname (C) : specifies the name for the type of boundary condition applied to a side

set. The permissable side set boundary condition for this format is ENClosure

RADiation (see Note 4).

sideset id (I) : specifies the previously assigned side set identifier for a group of

boundary conditions (see Note 4).

enclosure no. (I) : the number of the radiation enclosure that contains this side set

(see Note 7).

ENClosure=enclosure no., enclosure type, blocking option,

smoothing option, row-sum tolerance, Area∞, T∞, ε∞

enclosure no. (I) : specifies the number of the radiation enclosure (see Note 7).

enclosure type (C) : specifies if the enclosure is fully contained or has one or more

open surfaces. For a completely contained enclosure this parameter should be

set to FULL; an enclosure that contains an open boundary should have this

parameter set to PARTial. Partial enclosures must also have specified the last

three (optional) parameters on this card.

blocking option (C) <NOBL> : indicates if third surface shadowing needs to be

considered within the enclosure. This parameter should be set to BLOCk-

ing if third surface shadowing is present and should be omitted or set to

NOBLocking if the enclosure is unobstructed.

smoothing option (C) <NOSM> : indicates if a least squares smoothing of the view

factors is required. This parameter should be set to SMOOth if least squares

smoothing is desired and should be omitted or set to NOSMooth if smoothing

is not required.

row-sum tolerance (R) < 1.0× 10−4 > : specifies the maximum tolerance for row-

sums of view factors, requires
∑

Fij − 1.0 < tolerance, for each row.

Area∞ (R) < 0.0 > : specifies the total area associated with the open boundary.

T∞ (R) < 0.0 > : specifies the temperature of the open boundary.

ε∞ (R) < 0.0 > : specifies the emissivity of the open boundary.

VIEWfactor IO=type, filename, format

chapter 3.tex Revision : 1.1

28 CHAPTER 3. INPUT GUIDE

type (C) : specifies the direction of the view factor data transfer. When this param-

eter is set to READ, view factors are transferred to COYOTE/CHAPARRAL

from an existing file. A parameter setting of WRITe saves the view factors

computed by COYOTE/CHAPARRAL.

filename (C) : specifies the file name for the view factor data (see Note 8).

format (C) <BIN> : specifies the format under which the view factor data is writ-

ten to a file. The allowable formats are specified by the following parameter

settings: ASCIi, BINary (native machine binary), XDR and NETcdf. A for-

mat setting is not required for reading view factor data.

VIEWfactor COMPutation=method, storage format, resolution, print option

method (C) : specifies the method used to compute the view factors. The hemicube

algorithm is employed with a parameter setting of HEMIcube. Access to the

double area integration, contour integration and/or semi-analytic algorithms

are obtained by a parameter setting of FACEt (see Note 9).

storage format (C) <WRLE> : specifies the compression format used internally

by CHAPARRAL to store the view factor data. The allowable options are

selected by the following parameter settings: NOSTore (no storage), NO-

COmpress (no data compression), WRLE (word run length encoding), BRLE

(byte run length encoding) and LZWE (LZW encoding) (see Note 9).

resolution (I) <50> : specifies the resolution for the hemicube view factor algo-

rithm. The resolution must be specified as an even integer (see Note 9).

print option (C) <NONE> : specifies the printout level during view factor com-

putation (see Notes 9 and 10). The permissable values for this parameter are

NONE, SUMmary and EXTended.

VIEWfactor GRID=enclosure no., max surface intervals, no. rotational divisions,

no. x-grid divisions, no. y-grid divisions, no. z-grid divisions, min seperation distance,

clipping plane scale factor, no. of threads

enclosure no. (I) : specifies the number of the radiation enclosure (see Note 7).

max surface intervals (I) <5> : specifies the maximum number of subdivisions

used for each element face or edge during the computation of a view factor by

the area integration method (see Note 10).

no. rotational divisions (I) <8> : specifies the number of rotational intervals used

to resolve an axisymmetric geometry during the computation of view factors

by the area integration method (see Note 10).

Revision : 1.1 chapter 3.tex

3.4. PROBLEM DEFINITION DATA BLOCK 29

no. x-grid, y-grid, z-grid divisions (I) <1,1,1> : specifies the number of sorting bins

in each coordinate direction that are used during the checking for third surface

shadowing (see Note 10).

min seperation distance (R) <5.0> : specifies the minimum distance within which

surface subdivision will be employed (see Note 10).

clipping plane scale factor (R) <0.5> : specifies the near clip plane distance to be

the product of the clipping plane scale factor and the minimum element effec-

tive radius. This parameter may be set to USER to have the code compute

the near clip plane distance. (see Note 10).

no. of threads (I) <1> : specifies the number of threads for multithreading.

VELocity=type, block id, velocity specification

type (C) : specifies the type of reference frame used to describe the motion of the

material. If this parameter is set to EULerian, the material in the element

block is assumed to move continuously through a fixed mesh with the velocity

field specified on this card. A specification of LAGrangian indicates that

the element block and its associated mesh will be moved according to a set

of prescribed velocities or displacements. A parameter setting of EXTernal

implies that the motion of the element block is Lagrangian in nature and will

be supplied from an external source, such as a solid mechanics code (see Notes

11 and 12).

block id (I) : specifies the previously assigned block identifier for the block of ele-

ments for which material motion is allowed.

velocity specification : specifies the method for evaluating the velocity of the mate-

rial. This parameter may be replaced with any of the following:

Ux, Uy, Uz (R) : the constant values of the x, y and z components of material

velocity.

USER (C) : the material velocity will be evaluated by a user supplied subrou-

tine, USRVEL.

TFUNction (C), idtim1, idtim2, idtim3 (I) : the x, y and z velocity compo-

nents for the material will be evaluated via time functions with separate

time function identification numbers (see Note 5).

EXTernal NODal FIELd=name1, name2, ... , namen

name (C) : specifies the names of nodal point variables that are to be read from

an external EXODUS II file for use in the COYOTE simulation. Variable

chapter 3.tex Revision : 1.1

30 CHAPTER 3. INPUT GUIDE

names that are currently recognized by COYOTE include: DISPLX, DISPLY,

DISPLZ (components of the material displacement), VELX, VELY, VELZ

(components of the material velocity), MAG (magnetic field) and JHEAT

(Joule heating) (see Note 12).

EXTernal ELEMent FIELd=name1, name2, ... , namen

name (C) : specifies the names of element variables that are to be read from an exter-

nal EXODUS II file for use in the COYOTE simulation. Variable names that

are currently recognized by COYOTE include: STATUS (element birth/death

status) (see Notes 12 and 15).

PRINted OUTput=type

type (C) <SUMmary> : specifies the extent of printed output that is written to

the output file for the problem setup portion of the run. The permissable

values for type include SUMmary, EXTended and DEBug.

OUTput LOCations=e1, e2, e3, ... , en TO em, ...

e1, e2, e3, ... , en TO em, ... (I) : is a list of element numbers for which output data

will be printed during the solution process. Element numbers may be listed

individually or with the syntax en TO em, which indicates an inclusive string

of elements. A maximum of forty data entries may be listed on a single card;

multiple data cards are permitted.

SPECial OUTput=number of points, x1, y1, z1, x2, y2, z2

number of points (I) : specifies the total number of special points at which the

solution is to be computed (see Note 13).

x1, y1, z1, x2, y2, z2 ... (R) : the coordinates of the special output points. If the

problem is two-dimensional, only the x, y coordinates should be listed.

HEAT FLUX=sideset id1,sideset id2, ... sideset idn

sideset idn (I) : specifies the previously assigned side set identifiers for which total

energy computations are to be performed. If the optional sideset id’s are omit-

ted, only nodal values of the flux components will be computed (see Note 14).

A maximum of twenty sideset id’s may be listed.

Revision : 1.1 chapter 3.tex

3.4. PROBLEM DEFINITION DATA BLOCK 31

HEAT FUNCtion=H0

H0 (R) <0.0> : specifies the value of the heat function at the first node in the first

element processed (see Note 14).

DEAth, block id, level, variable, mode

block id (I) : specifies the previously assigned identifier for the block of elements

that is to have individual elements removed from the simulation as the specified

criteria is reached (see Note 15).

level (R) : sets the critical level for the variable used to remove the elements.

variable (C) <TEMPerature> : specifies the name of the variable that controls

elimination of elements within the block. This parameter may be set to TEM-

Perature, TDOT (temperature rate) or to one of the names of the species in

a chemically reactive material (see Note 15).

mode (C) <MAXimum> : sets the type of criteria used for removal of the elements.

This parameter should be set to MAXimum if the element is to be removed

when a representative element value exceeds the specified critical level and

should be set to MINimum if the removal occurs when the element value falls

below the critical level (see Note 15).

DELete MATerial, block id, variable, value

block id (I) : specifies the previously assigned identifier for the block of elements

that is to be removed from the simulation as the specified criteria is reached

(see Note 15).

variable (C) : specifies the name of the variable that controls elimination of the

element block. This parameter is presently limited to the value TIME (see

Note 15).

value (R) : sets the critical value for the variable used to remove the element block.

ADD MATerial, block id, variable, value

block id (I) : specifies the previously assigned identifier to the block of elements that

is to be activated during the simulation as the specified criteria is reached (see

Note 15).

variable (C) : specifies the name of the variable that controls activation of the el-

ement block. This parameter is presently limited to the value TIME (see

Note 15).

chapter 3.tex Revision : 1.1

32 CHAPTER 3. INPUT GUIDE

value (R) : sets the numerical value for the criteria used to activate the element

block.

SIGma=σ

σ (R) : the value of the Stefan-Boltzmann constant

GAS CONstant=R

R (R) : the value of the gas constant

Notes:

1) Element blocks form a basic grouping for data within COYOTE and also within the

input and output EXODUS II files. An element block consists of a group of finite

elements that must share the same geometry (shape and number of nodes), material

and number of element attributes. The definition of an element block occurs during

the mesh generation process and its precise configuration is at the discretion of

the user as long as the previously defined restrictions are respected. Note that an

element block is not necessarily an inclusive grouping; multiple element blocks with

the same element type, material and attributes may be defined if this is convenient

or required for the particular application. Associated with each element block is a

unique integer identifier (block id) that is assigned by the user at the time of block

creation. Data assignments for an element block are always accomplished within

COYOTE through reference to the element block id. See reference [5] for further

details regarding element blocks.

2) The quadrature rules used to integrate the finite element matrices can be varied

from their default definitions through specification of the optional integration rule

number. Such changes are not generally recommended but in some circumstances

(e.g., the occurrence of highly distorted elements or the need to reduce the cost of

element construction) may be warranted. Listed in Table 3.1 are the quadrature

rule numbers available for each element type, the number of integration points

in each formula and an indication of the default rule. Note that for problems

involving reactive materials, changing the quadrature formula will normally change

the number of chemistry computation points within the element. Quadrature rules

are defined for individual element blocks; the same rule should be defined for all

elements of the same type. If multiple rules are specified for one element type, the

last rule input will be used.

Revision : 1.1 chapter 3.tex

3.4. PROBLEM DEFINITION DATA BLOCK 33

3) Boundary conditions for individual nodal points in a mesh are assigned in COYOTE

by association of the name (type) of the boundary condition with each node set

identifier (nodeset id). The nodeset id is a unique integer that is assigned by

the user to one or more nodes during the mesh generation process. Note that

spatial variations in the nodal boundary condition can be controlled through a

distribution factor that is also specified during mesh generation. The nodeset ids

and distribution factors are passed to COYOTE through the EXODUS II file. See

reference [5] for further details.

4) Boundary conditions for element surfaces or edges are assigned in COYOTE by

association of the name (type) of the boundary condition with each side set identifier

(sideset id). The sideset id is a unique integer that is assigned by the user to

one or more element surfaces (edges) during the mesh generation process. Note

that spatial variations in the boundary condition over the element surface can be

controlled through a set of distribution factors that are also specified during mesh

generation. The sideset ids and distribution factors are passed to COYOTE through

the EXODUS II file. See reference [5] for further details.

5) Simple variations in boundary conditions assigned to element nodes or surfaces

(edges) may be conveniently specified by assigning a functional variation to the

boundary condition. Time functions and variable functions (i.e., functions of tem-

perature) are described in Sections 3.7 and 3.8. Each function is assigned an integer

id which is then used in the boundary condition specification. Boundary condition

node sets and side sets may share functions; the mfactor can be used to scale indi-

vidual functions. Spatial variations in a boundary condition are controlled through

the use of distribution factors (see Notes 3 and 4) or a user subroutine.

6) The contact boundary condition allows a general (gap) heat transfer condition to be

specified between any two surfaces in a problem. The three different forms of this

boundary condition allow the particpating surfaces to be conveniently identified

with increasing generality. The most restrictive case is paired surface contact in

which two surfaces with distinct side set ids are allowed to interact thermally with

a specified heat transfer coefficient. A subset of this specification is self-contact in

which a single surface can interact with itself. This case is invoked by replicating

the side set id in the boundary condition specification. A more general contact

specification identifies an element block and a surface that may interact. In this

case, all surfaces of the element block are considered for thermal interaction with

the specified surface. The third option is the most general and allows two element

blocks to interact. All surfaces in each block are considered for contact with the

opposing block. Self-contact for a single element block can be invoked by replicating

the block id in the boundary condition specification. In all cases the gap heat

chapter 3.tex Revision : 1.1

34 CHAPTER 3. INPUT GUIDE

Element Rule Number of Default Rule Rule for

Type Number Integration Points for Each Element Flux Evaluation

Bar 1 1

2 2 Linear ∗
3 3 Quadratic

Triangle 1 1

2 3 Linear ∗
3 4

4 7 Quadratic

Quad 1 1

2 4 (2 × 2) Linear ∗
3 9 (3 × 3) Quadratic

Tetrahedron 1 1

2 4 Linear ∗
3 5 Quadratic

Prism 1 1

2 6 Linear ∗
3 12 Quadratic

4 21

Hexahedron 1 1

2 6

3 8 (2 × 2 × 2) Linear ∗
4 14 Quadratic

5 27 (3 × 3 × 3)

Shell (Tri) 1 1

2 3 Linear ∗
3 4

4 7 Quadratic

Shell (Quad) 1 1

2 4 (2 × 2) Linear ∗
3 9 (3 × 3) Quadratic

Table 3.1: Quadrature rules for elements in COYOTE

Revision : 1.1 chapter 3.tex

3.4. PROBLEM DEFINITION DATA BLOCK 35

transfer condition is applied for all nodes and elements that are found to be in

contact during a given time step or iteration. The gap condition can be extended

to finite gap separations if the user subroutine option is used for the coefficient

specification. Note that bar and shell elements are not included in this capability;

only the linear continuum elements can be used with the current contact algorithm.

7) COYOTE allows multiple enclosures to be defined for the simulation of surface-

to-surface radiation heat transfer. Each enclosure is identified by a user defined

integer enclosure number; enclosures should be numbered consecutively starting

with 1. The element surfaces (edges) that form each enclosure are identified by one

or more sideset ids; a BCtype= ENClosure RADiation card must be provided for

each side set in the enclosure. Enclosure data is specified on the ENClosure data

card, one of which is required for each enclosure. Note that bar elements are not

included in the enclosure radiation algorithm. Shell elements are acceptable in an

enclosure when the shell face is the radiating surface; radiation from the edge of a

shell is not permitted.

8) View factor data is computed by the code CHAPARRAL [6] and made available to

COYOTE through an internal transfer. This data may also be stored on a disk file,

in various formats, for future use. The local filename (pathname) is required when

view factor data is to be written or read from this file. The filename is limited to

20 characters.

9) The CHAPARRAL code [6] contains numerous options for the computation, com-

pression and storage of view factor data during a COYOTE run. Many of these

options are of little interest to the casual user and can be safely left at their default

settings. For extremely large problems, the user may wish to consult [6] for details

on other parameter settings to ensure an efficient solution process and storage of

data.

10) View factors computed by the standard double area integration, contour integra-

tion, etc. methods require the specification of a background grid for efficient opera-

tion. These methods have been adopted from the FACET code [7] and are available

as part of CHAPARRAL [6]. The background grid is primarily used for the sorting

of interacting surfaces, especially when third-surface shadowing is present. The

max surface intervals, no. rotational divisions, min seperation distance, and clip-

ping plane scale factor parameters determine how accurately the surface of any

element is gridded during a view factor computation. These parameters can have

a very strong influence on the overall view factor computation time.

11) Lagrangian velocity specifications are used in COYOTE to move the appropriate

element block and compute an updated set of nodal coordinates. Nodal velocities

chapter 3.tex Revision : 1.1

36 CHAPTER 3. INPUT GUIDE

are not stored as variables but simply used to generate total displacements which

are stored and made available in the EXODUS II output file. When kinematic data

is supplied from an external source, either velocity or displacement fields may be

used. Internally supplied kinematics are limited to velocity fields. Note that it is

not permissable to mix internal and external specifications for kinematic data since

the external source is expected to supply the appropriate fields for the entire mesh.

12) Dependent variables from other mechanics codes may be supplied to COYOTE for

use in coupled simulations. The two EXTernal ... FIELd commands indicate to

COYOTE that an EXODUS II file has been properly named and attached to the

code (see Section 4.3). The listed nodal point and element variables are read from

the external file and made available to various COYOTE routines, including some

of the user supplied subroutines.

13) The SPECial OUTput option allows a number of spatial locations to be defined

at which the temperature can be computed, labeled and stored for post-processing.

These locations are arbitrary and need not be nodal points. Special points should

not be located in bar or shell elements as these types of elements are excluded from

the search process. A limit of 50 such points may be defined, the first 20 of which

are labeled TP1, TP2, TP3, ... TP20. Data at all of the special points is printed to

the output file at the selected output intervals. Labeled data may also be written

to the post-processing file for later plotting; special output points are defined as

Global data (see Section 3.6).

14) The specification of the basic HEAT FLUX option causes the x, y and z compo-

nents of the heat flux vector to be computed for each time step or iteration. The

fluxes are evaluated at a fixed number of (integration) points within each active el-

ement. These discontinuous flux values are subsequently extrapolated to the corner

nodes of the element and averaged between adjoining elements to produce a con-

tinuous nodal point flux field. For higher-order elements, midedge (midside) values

of the fluxes are generated by interpolation. The flux components should be writ-

ten to the post-processing file as no printed output of these quantities is available.

Note that the integration points used to define flux locations may not be the same

(quadrature) points used to evaluate element matrices and define chemistry points.

This is only of concern when a material is reactive and the thermal conductivity is

dependent on species concentration. In this case, the flux and quadrature points

must be made to coincide if fluxes are to be computed. The data in Table 3.1 shows

the integration points used for the flux evaluation.

When sideset id’s are specified, some additional processing of the flux data occurs.

For each element face (side) in a given sideset, the heat flux normal to the surface

is computed and integrated over the area (length) of the element face (side). These

Revision : 1.1 chapter 3.tex

3.5. SOLUTION DATA BLOCK 37

elemental energy contributions are summed to produce the total energy transfer

for the surface defined by a sideset; these values are reported in the printed output

for each time step or iteration.

The HEAT FUNCtion option is only available for two-dimensional geometries

and causes a scalar potential to be constructed that is useful in the visualization

of energy transport through a domain. The definition of the heat function and its

numerical construction is outlined in [3]. Since the heat function requires nodal

values of the heat flux, this option automatically invokes the basic HEAT FLUX

computation, if it has not been previously specified. Also, as the heat function

is constructed incrementally, on an element-by-element basis, the sequencing of

elements must be continuous or the process will fail. The heat function should be

written to the post-processing file as no printed output of this quantity is available.

15) Material removal from a problem may be accomplished by either of two techniques,

both of which require some expertise on the part of the user. The DEAth option

removes individual elements from a specified element block whenever a local element

criteria is reached. The removal criteria is based on the comparison of an element

centroidal temperature, temperature rate or species concentration with the critical

level specified on the DEAth data card. Note that when an element is removed

from the problem it cannot be reactivated. The DELete MATerial option is

more global in nature and removes an entire block of elements at a defined, critical

time in the analysis. The ADD MATerial option is the reverse of the deletion

process and activates a block of elements at a specified critical time; the added

block is assumed to have a uniform initial temperature and chemical composition

as specified by the material property data for the block. The proper use of material

addition and deletion requires special attention to the boundary conditions that

are applied to the activated and deactivated elements. Examples of the use of this

option are given in [4].

3.5 Solution Data Block

The control of the solution process for the steady or time-dependent heat conduction

problem is accomplished through the solution data block and its associated data cards.

A separate solution block is required for each change in solution algorithm or change

in any of the associated solution parameters. Input of data for each solution block is

terminated by an END card. The solution data block is of the following form:

SOLution, solution block number, time dependence 2

.

chapter 3.tex Revision : 1.1

38 CHAPTER 3. INPUT GUIDE

.

Solution Data

.

.

.

ENDsolution 2

where

solution block number (I) : is the number of the solution block. Solution blocks are

executed in numerical order and should be numbered consecutively starting with 1

(see Note 1).

time dependence (C) : indicates if the solution block should be treated as a transient or

steady state problem. This parameter should be set to TIMe INDependent for a

steady solution and set to TIMe DEPendent for a transient solution sequence.

Solution Data

The parameters that control the steady or transient solution process within each

solution block are specified by a series of data cards. Each solution option data card

begins with a keyword and is followed by one or more parameters. Data supplied within a

given solution block applies only within that block; parameter settings are not maintained

across solution blocks and are reset (or defaulted) by subsequent solution blocks.

The individual solution data cards recognized by COYOTE are listed below along

with the various options available for each parameter.

REStart TIME=trestart

trestart (R) <0.0> : specifies the timeplane (time) on the restart file that is to be

used for initializing the solution field (see Note 2).

REStart STEP=step number

step number (I) <last solution on the file> : specifies the timeplane (number) on

the restart file that is to be used for initializing the solution field (see Note 2).

The default setting selects the last solution available on the restart file.

ITERative METHod=scheme

Revision : 1.1 chapter 3.tex

3.5. SOLUTION DATA BLOCK 39

scheme (C) <PICard> : specifies the type of iterative method employed for non-

linear, time independent problems. For a heat conduction problem without

enclosure radiation, the permissable value for this parameter is PICard. Com-

bined enclosure radiation and conduction problems may have parameter set-

tings of PICard or NEWton (see Note 3).

INTegration METHod=scheme, predictor option

scheme (C) <TRAPezoid> : specifies the type of time integration method em-

ployed for time dependent problems. The permissable values for this param-

eter are EULer, TRAPezoid and EXPlicit (see Note 4).

predictor option (C) <PREDict> : specifies if the explicit predictor is to be used in

conjunction with an implicit integration method. This parameter may be set

to PREDict or left blank, if the predictor step is to be employed; a parameter

setting of NOPRedict eliminates the predictor step (see Note 4).

CAPacitance MATRix=type

type (C) <CONsistent> : specifies the treatment of the capacitance matrix in time

dependent problems. The permissable values for this parameter are CONsis-

tent and LUMPed (see Note 4).

TIME STEP OPTion=type

type (C) <AUTOstep> : specifies the type of time step control used in time de-

pendent problems. The permissable values of this parameter are FIXed or

AUTOstep (see Note 4).

INTegration TOLerance=integ tol

integ tol (R) < 1.0× 10−4 > : specifies the integration tolerance for the time step

control under the AUTOstep option. This parameter is only applicable to the

implicit integration methods (see Note 4).

NORM TEMPerature=Tnorm

Tnorm (R) < maximum T in solution > : specifies an appropriate (maximum) tem-

perature to be used in defining an RMS norm on the temperature change over

a time step or iteration. The default temperature scale for the norm is the

chapter 3.tex Revision : 1.1

40 CHAPTER 3. INPUT GUIDE

maximum temperature found in the solution vector at each step or iteration.

If the maximum temperature is not constant for the simulation, this param-

eter should be specified to ensure a consistent definition of the norm. The

definition of the RMS norm is given in [3].

TIME STEP FACTor=βexplicit

βexplicit (R) <0.9> : specifies the scale factor to be applied to the maximum stable

explicit time step. This parameter is only applicable to the explicit integration

method (see Note 4).

TIME STEP=∆t 2

∆t (R) : specifies the time step for a time dependent simulation. For the FIXed

time step option this time step is used throughout the solution block. When

the AUTOstep option is selected, this is the initial time step for the integration

process. A method for properly estimating the initial time step is described

in Appendix C.

INITial TIME=tinit

tinit (R) <0.0> : specifies the initial time for a time dependent simulation. Note

that this parameter only needs to be specified for the first solution block except

in the case of a restart problem, where the initial time is obtained from the

restart file.

FINal TIME=tfinal 2

tfinal (R) : specifies the final time for a time dependent simulation (see Note 5).

NUMber TIME STEPs=nstep 2

nstep (I) <1000> : specifies the total number of time steps allowed in a time de-

pendent simulation (see Note 5).

ABSolute TEMPerature LIMit=Tlim

Tlim (R) < 1.0× 1020 > : specifies the allowable upper limit on the temperature

field. If the temperature at any node exceeds Tlim then the simulation is

terminated (see Note 5).

Revision : 1.1 chapter 3.tex

3.5. SOLUTION DATA BLOCK 41

MINimum TIME STEP=∆tmin

∆tmin (R) < ∆tinit × 0.0001 > : specifies the minimum time step allowed during a

time dependent simulation.

MAXimum TIME STEP=∆tmax

∆tmax (R) < ∆tinit × 10000.0 >(R) : specifies the maximum time step allowed dur-

ing a time dependent simulation.

MAXimum TEMPerature STEP=∆Tmax

∆Tmax (R) : specifies the maximum change in the temperature that is allowed dur-

ing any time step in a time dependent simulation. This parameter is only

valid when the AUTOstep time step option has been selected (see Note 4).

CHEMistry STEP MULTiplier=Xchem

Xchem (R) < 100.0 > : specifies the ratio of the maximum allowed conduction time

step to the smallest, current chemistry time step (see Note 6).

CONVergence TOLerance=tol

tol (R) < 1.0× 10−5 > : specifies the temperature convergence tolerance for a non-

linear, steady state problem or the steady state tolerance for a time dependent

simulation (see Note 5).

RELaxation FACTor=α

α (R) <0.0> : specifies the relaxation factor to be used in the iterative solution of

a nonlinear, steady state problem. For coupled heat conduction and enclosure

radiation problems solved with Newton’s method, both the temperatures and

the radiative heat fluxes are relaxed.

MAXimum ITERations=itermax

itermax (I) <5> : specifies the maximum number of iterations allowed in the iter-

ative solution of a nonlinear, steady state problem (see Note 5).

PRINted OUTput=option, frequency

chapter 3.tex Revision : 1.1

42 CHAPTER 3. INPUT GUIDE

option (C) <SUMmary> : specifies the type of printed output that is writtend to

the output file during the solution process. The allowable options are NONE,

SUMmary, EXTended and DEBug.

frequency (I) <1> : specifies how often data is printed during the solution process;

data is printed every n iterations or time steps where n=frequency.

RADiation SOLution=method, tolerance, itermax, relax factor

method (C) <GAUSs> : specifies the algorithm to be used for solution of the en-

closure radiation problem. When this parameter is set to GAUSs the net

radiation problem is solved using a Gauss-Seidel iterative method. A param-

eter setting of PROGressive selects the progressive refinement algorithm.

tolerance (R) < 1.0× 10−3 > : specifies the convergence tolerance for the enclosure

radiation solution; based on the change in the magnitude of the radiosity.

itermax (I) < 200, 2× nsurfaces > : specifies the maximum number of iterations

allowed for the enclosue radiation solution. The first default value corresponds

to the Gauss-Seidel method and the second default is for the progressive re-

finement algorithm.

relax factor (R) < 1.2 > : specifies the over-relaxation factor to be used with the

Gauss-Seidel solution method.

VIEWfactor UPDate=option, frequency

option (C) : specifies the type of procedure used to determine when view factors

should be updated during the solution process. If this parameter is set to

STEP, the view factors are recomputed every n iterations or time steps, where

n is equal to the frequency parameter. A parameter setting of TIME indicates

that the view factors will be updated at a fixed time interval, ∆t, set by the

frequency parameter (see Note 7).

frequency (I or R) : specifies the integer number of steps (iterations) between view

factor updates or the time interval between recomputation of the view factors.

MATRix SOLver=method, krylov subspace

method (C) < CG > : specifies the type of method used to solve the linear algebra

problem at each iteration or time step. The parameter setting CG speci-

fies that a conjugate gradient method will be used for the matrix problem.

Other permissable parameter settings include CGS, for the conjugate gradi-

ent squared method, GMRes for the generalized minimum residual method

Revision : 1.1 chapter 3.tex

3.5. SOLUTION DATA BLOCK 43

and QMR for the quasi-minimum residual method. A final parameter setting

of DIRect allows access to a direct (non-iterative) matrix solution method (see

Note 8).

krylov subspace (I) <10> : indicates the dimension of the Krylov subspace used

with the GMRes iterative solution method.

PREConditioner TYPE=option, polynomial order

option (C) <JACobi> : specifies the type of preconditioner to be used in conjunc-

tion with the selected iterative matrix solver. The permissable values for this

parameter are NONE, JACobi, POLYnomial, ILU and IC (see Note 8).

polynomial order (I) < 1 > : specifies the order of the polynomial used in the

POLYnomial preconditioner option.

L2 NORM=L2

L2 (R) < 1.0× 10−6 > : specifies the value of the L2 norm for terminating the

preconditioned conjugate gradient solution of the matrix problem during any

given iteration or time step (see Note 8).

RESidual NORM=resid

resid (R) < 0.1 > : specifies the value of the residual norm for terminating the

preconditioned conjugate gradient solution of the matrix problem during any

given iteration or time step (see Note 8).

MAXimum MATRix ITERations=matrix iter

matrix iter (I) < NUMNOD > : specifies the maximum number of iterations al-

lowed for the solution of the matrix problem during any given iteration or

time step (see Note 8).

EPSilon MINimum=εmin

εmin (R) < 0.0001 > : specifies a lower bound convergence criteria and chemistry

time scale check (see Note 9).

EPSilon MAXimum=εmax

chapter 3.tex Revision : 1.1

44 CHAPTER 3. INPUT GUIDE

εmax (R) < 10.0 > : specifies an upper bound convergence criteria and chemistry

time scale check (see Note 9).

MINimum CHEMistry TIMEstep=∆tchemmin

∆tchemmin (R) < 1.0× 10−15 > : specifies the minimum time step allowed during the

solution of the chemical rate equations (see Note 9).

PERcentage ASYMptotics=pctasymp

pctasymp (R) < 0.0 > : specifies the percentage of the chemical rate equations that

will always be solved using asymptotics (see Note 9).

TOLerance ASYMptotics=tolasymp

tolasymp (I) < 100.0 > : specifies the asymptotic selection criteria for the chemical

rate equations (see Note 9).

Notes:

1) Each solution block should be constructed such that all the parameters required

for that portion of the solution process are defined. The only data that is car-

ried across solution blocks is the last computed temperature field, the current time

and a global step number. Any parameters that are defined in one block but

not defined in subsequent blocks revert to their default values. Though the input

order of solution blocks is arbitrary, execution of the blocks is carried out accord-

ing to the solution block number, which must form a consecutive sequence. Also,

note that changes in the solution algorithms across solution blocks are generally

arbitrary with one exception. The use of the Newton method with enclosure radia-

tion requires substantially more memory than the decoupled algorithms that treat

conduction and radiation in a sequential solution process. Switching between the

coupled and decoupled methods across solution blocks is not permitted.

2) Restarts of a solution procedure from a previously computed solution require that

a file in an EXODUS II format be attached to COYOTE with a specified file name

(see Section 4.3). The particular solution field used to initialize the new solution

process is specified by providing either the time or the step (iteration) number for

the field located on the external file. Further details on the restart process and

restrictions are provided in Section 3.12.

Revision : 1.1 chapter 3.tex

3.5. SOLUTION DATA BLOCK 45

3) The weakly nonlinear problems normally encountered in time independent heat con-

duction simulations are adequately treated with a simple Picard iteration method.

However, the inclusion of enclosure radiation in the steady problem significantly

increases the nonlinearity of the system and makes convergence more difficult. The

selection of Newton’s method for the combined radiation and conduction problem

usually leads to improved convergence of the iterative process. Note that when the

Newton algorithm is selected, the conduction and enclosure radiation equations are

solved as a completely combined system. This circumstance leads to large increases

in the computer memory requirements for the problem; large three-dimensional ge-

ometries with a large number of radiating surfaces may not be solvable with the

Newton option. When the Picard method is applied to the enclosure radiation and

conduction problem, the equation systems are solved in a decoupled, sequential

algorithm. This leads to the ability to accommodate larger problem sizes though

very large relaxation factors (e.g., α > 0.9) are normally required to achieve con-

vergence. When neither of the above algorithms are suitable a transient approach

is a viable alternative.

4) All of the time integration methods available in COYOTE may be employed with

either a fixed time step or an adaptive time step control. For the implicit integra-

tors (Euler and Trapezoid methods) the adaptive time step is based on an accuracy

criteria that is specified by the INTegration TOLerance parameter. Adaptive

time step control for these methods also requires that the predictor option be acti-

vated; if the predictor is deactivated, the time step option is automatically set to

a fixed time step procedure. The adaptive time step control for the explicit inte-

grator is based on stability considerations; the TIME STEP FACTor allows the

maximum stable explicit time step to be scaled by the user. Under the adaptive

time step control option, a new time step is computed at the end of each step. If

the MAXimum TEMPerature STEP parameter has been specified, the computed

time step may be reduced to ensure that the limit on the maximum temperature

change is respected.

The capacitance matrix may be lumped or left in a consistent form with the im-

plicit integration methods. Capacitance lumping for the explicit integrator is au-

tomatically invoked by the code. The use of the lumping option with higher-order

(quadratic temperature) elements is not recommended.

5) The solution processes in COYOTE may be terminated by any of several criteria.

For time-independent, iterative methods, the solution process may be terminated

after a certain number of iterations (MAXimum ITERations), when the change

in the solution (norm) between iterations has reached a nominal value (CONVer-

gence TOLerance) or when the temperature exceeds a specified value (ABSolute

TEMPerature LIMit). The time integration methods are terminated based on

chapter 3.tex Revision : 1.1

46 CHAPTER 3. INPUT GUIDE

the total number of time steps taken (NUMber TIME STEPs), the end of the

integration interval (FINal TIME), the attainment of a steady temperature state

(CONVergence TOLerance) or when the temperature exceeds a specified value

(ABSolute TEMPerature LIMit). These stopping parameters are generally set

to values that should not prematurely terminate the analysis, though the (CON-

Vergence TOLerance) parameter may need to be reset for problems that evolve

slowly at early times. For coupled heat conduction and enclosure radiation, only

temperatures are checked for convergence.

6) The coupling between the time scales for conduction and chemical reaction is ac-

complished with the CHEMistry STEP MULTiplier parameter. At the con-

clusion of each time step the newly recommended time step for thermal conduction

is compared to the newly computed time step for the chemical kinetic equations.

If the time step for conduction is more than Xchem times the chemistry time step,

the conduction time step is reduced so that the Xchem ratio is satisfied. If the

new conduction time step is less than Xchem times the chemistry time step, then

both recommended time steps are accepted and used in the next solution. This

procedure allows the chemistry to control the integration process during the rapid

reaction phase of a problem while keeping thermal conduction in control during

slow reaction intervals.

7) When enclosure radiation is part of the conduction problem, the view factors for

the geometry are normally computed only once under the assumption that the

problem geometry is not variable. In cases where (Lagrangian) material motion is

prescribed, the view factors should be periodically updated to reflect the evolving

geometric configuration. A similar updating is appropriate when material is added

or deleted from the simulation. The VIEWfactor UPDate input allows updating

to occur based on the number of time steps between updates or the time interval

between updates. Note that the default for this parameter corresponds to the case

where updating of the view factors will occur for every time step - a process that

can be very expensive.

8) The primary matrix solution methods available in COYOTE consist of iterative

methods based on the Krylov or conjugate direction algorithms. To use these meth-

ods effectively also requires the selection of an acceptable preconditioning technique.

The solution package called by COYOTE was developed by Schunk and Shadid [8]

and contains a wide spectrum of symmetric and unsymmetric matrix methods with

a variety of preconditioners. For most standard conduction problems the selection

of a conjugate gradient solver (CG) with JACobi preconditioning is adequate. Un-

symmetric systems arising from a combined enclosure radiation, heat conduction

problem can be solved with a generalized minimum residual method (GMRes) and

Revision : 1.1 chapter 3.tex

3.6. POST-PROCESSING DATA BLOCK 47

the ILU preconditioner. This choice is also appropriate for the unsymmetric system

developed in the advection-diffusion form of the energy equation. Further details

on these solvers and their overall performance on different types of problems can

be found in [8]. Though a direct solution method is also available in this pack-

age, it is not recommended except for modest-sized, two-dimensional simulations.

The matrix solver parameters L2 NORM and RESidual NORM do not usu-

ally require adjustment; the parameter MAXimum MATRix ITERations is set

for medium-sized problems and may need to be set substantially higher for large

simulations. The precise definition and function of these parameters is given in [8].

9) The adjustment of the parameters that control the operation of the stiff, ordinary

equation solver, CHEMEQ, requires a very experienced user. The default parameter

settings are those recommended in the original CHEMEQ document [9] and have

proven suitable for a large class of reaction equations. The definitions for the listed

control parameters are provided in [9].

3.6 Post-processing Data Block

The control of the output of data to the post-processing file is accomplished through the

post-processing data block and its associated data cards. This data block is optional.

Input of post-processing data is terminated by an END card. The post-processing data

block is of the following form:

POST

.

.

Post-processing Data

.

.

.

ENDpost

Post-processing Data

The output of various solution variables to the post-processing EXODUS file is man-

aged through a series of data cards within the post-processing data block. Each data

card begins with a keyword and is followed by one or more parameters that define the

various options. The individual post-processing data cards recognized by COYOTE are

listed below.

chapter 3.tex Revision : 1.1

48 CHAPTER 3. INPUT GUIDE

NODal DATA=name1, name2,....

name1, name2,.. (C) : specify the names of the nodal point variables that are to

be written to the post-processing output file. The following variable names

are allowed: TEMPerature, TDOT (time rate of change of temperature),

QXFLux, QYFLux, QZFLux (components of the heat flux), HFUNction (two-

dimensional heat flow function) and DISPLX, DISPLY, DISPLZ (components

of the material displacement).

ELEMent DATA=name1, name2,....

name1, name2,.. (C) : specify the names of the element variables that are to be

written to the post-processing output file. The allowed variable name is cur-

rently limited to STATUS (variable that specifies the element status for the

birth/death option) (see Note 1).

CHEMistry DATA=name1, name2,....

name1, name2,.. (C) : specify the names of the chemistry variables that are to be

written to the post-processing output file. The allowed variable names are

those specified as SPECies under each material definition and GASFrac for

gas fractions at element centroids.

GLOBal DATA=name1, name2,....

name1, name2,.. (C) : specify the names of the global variables that are to be writ-

ten to the post-processing output file. The following variable names are rec-

ognized: TIMESTEP (the integration time step), CGITER (the number of

iterations taken by the conjugate gradient solver), TP1, TP2, ... TPn, ...

TP20 (temperature at special output points) and QN1, QN2, ... QNn, ...

QN20 (integrated heat fluxes on element side sets). The n in the TP name

refers to the special point number as given by the sequence of points listed on

the special point card (see Section 3.4). The n in the QN name refers to the

sequence number of the side sets specified on the HEAT FLUX option (see

Section 3.4).

OUTput FREQuency=nsteps

nsteps (I) < 1 > : specifies the frequency at which data is written to the post-

processing file. All requested data is written every nsteps time steps or itera-

tion cycles.

Revision : 1.1 chapter 3.tex

3.7. TIME FUNCTION DATA BLOCK 49

OUTput TIMEs= t1, t2, . . . tn

t1, t2, . . . tn (R) : specify the set times at which data is written to the post-processing

file. All requested data is written whenever the simulation time exceeds one of

the specified output times. A maximum of fifty specific times may be specified;

the times must be ordered in a strictly increasing sequence (see Note 2).

OUTput TIME STEP= ∆tout

∆tout (R) : specifies the time interval at which data is written to the post-processing

file. All requested data is written whenever the simulation time exceeds one

of the times given by the sequence tout = tinit + n∆tout where n = 1, 2, 3, . . .

(see Note 2).

Notes:

1) The element variable STATUS indicates if an element within an element block is

currently active or inactive. The status variable is set to zero for an active element

and is unity for a deactivated element. The setting of this variable is controlled

by the material addition and deletion options; the element activation status may

also be controlled from an external solution file through the EXTernal ELEMent

FIELd input in the Problem Definition Data Block (see Section 3.4).

2) When requesting output at specified times or time intervals it is important to

coordinate these requested times with the time step being used in the solution of

the finite element equations. In general, output time intervals must be larger than

solution time steps. If successive output times fall within a single computational

time step, the test for output of a solution will fail and no further output will be

generated. The output processor always checks to see if the next requested output

time has been passed by the solution time; once the output time falls behind the

solution time the output check will always fail.

3.7 Time Function Data Block

The specification of time functions for use in boundary conditions or material models is

accomplished with the time function data block and its associated data cards. A separate

time function block is required for each time function used in a COYOTE simulation.

chapter 3.tex Revision : 1.1

50 CHAPTER 3. INPUT GUIDE

Input to each time function is terminated by an END card. This data block is optional.

The time function data block is of the following form:

TIME FUNction=function id

t1, f(t1)

t2, f(t2)

t3, f(t3)

.

.

.

tn, f(tn)

.

.

ENDtime

where

function id (I) : is a unique, integer identifier for the time function.

tn, f(tn) (R) ; is a list of times and function values used to define the time function (see

Note 1).

Notes:

1) The sequence of times for each function must form an increasing sequence. Also,

no extrapolation or continuation of data beyond the last data point is allowed by

COYOTE. If the solution time exceeds the time for the function, the code will

terminate execution with an error message. The function data is used with a linear

interpolation scheme to provide variable values at intermediate times.

3.8 Variable Function Data Block

The specification of variable functions for use in boundary conditions or material models

is accomplished with the variable function data block and its associated data cards. A

separate variable function block is required for each variable function used in a COYOTE

Revision : 1.1 chapter 3.tex

3.9. USER CONSTANTS DATA BLOCK 51

simulation. Input to each variable function is terminated by an END card. This data

block is optional. The variable function data block is of the following form:

VARiable FUNction=function id

T1, f(T1)

T2, f(T2)

T3, f(T3)

.

.

.

Tn, f(Tn)

.

.

ENDvariable

where

function id (I) : is a unique, integer identifier for the variable function.

Tn, f(Tn) (R) ; is a list of variable and function values used to define the variable function.

In the current version of COYOTE the temperature is the only variable allowed in

the definition of a variable function (see Note 1).

Notes:

1) The sequence of temperatures for each function must form an increasing sequence.

Also, no extrapolation or continuation of data beyond the last data point is allowed

by COYOTE. If the current temperature falls above or below the temperature

range of the function the code will terminate execution with an error message. The

function data is used with a linear interpolation scheme to provide variable values

at intermediate temperatures.

3.9 User Constants Data Block

The specification of real or integer constants that may be useful within user supplied

boundary condition or material property subroutines is controlled by the user constant

chapter 3.tex Revision : 1.1

52 CHAPTER 3. INPUT GUIDE

data block and its associated data cards. The data supplied in this block is recorded in

two vectors (real and integer) and passed to all user supplied subroutines through their

parameter lists. Subroutine evaluations that make use of these constants may therefore be

altered through the input file, without modification and recompilation of the subroutines.

This data block is optional. The user constants data block is of the following form:

USER CONstants

.

.

USER REAL=n, rvalue

.

.

.

USER INTeger=m, ivalue

.

.

ENDconstant

where

n,m (I) : are unique, integer indices that locate each constant within its appropriate vector

(see Note 1).

rvalue, ivalue (R and I) ; are the real and integer values of the constants

Notes:

1) Real and integer user defined constants are stored in two vectors called RCONST

and ICONST, respectively. The indices specified on the data cards allow the user

to precisely determine where in each vector the constant will be stored. Note that

the RCONST and ICONST vectors are dynamically allocated and the length of

each vector corresponds to the largest n and m values encountered in the input.

3.10 Termination Data

The termination of data within a particular data block is signaled with an END command

and has been described in the previous chapters. The termination of all data input to

Revision : 1.1 chapter 3.tex

3.11. USER SUPPLIED SUBROUTINES 53

COYOTE is signaled by use of either the EXIT or STOP data cards. This command

must be the last data entry in the input file to ensure proper program termination.

3.11 User Supplied Subroutines

There are several instances which require the user to supply FORTRAN coded subrou-

tines to COYOTE. The occurrence of variable material properties or source terms, the

definition of some types of material motion and the specfication of certain types of vari-

able boundary conditions result in the need for one or more user supplied subroutines.

The required formats for these subroutines will be described in the following chapters.

Skeleton versions of all user subroutines are supplied with the COYOTE code and may

be used as templates for specific applications.

3.11.1 Material Properties

Variations in thermophysical properties due to temperature variations can normally be

accommodated with function type data. However, when property variations are complex

or depend on variables other than temperature, then a subroutine evaluation may be

more apropriate. When any of the material property data cards DENsity, SPECific

HEAT, CONDuctivity, TENsor ROTation or EMISsivity are set to USER for

any material in the problem (see Section 3.3), a user subroutine describing that material

property must be supplied to COYOTE. Each user subroutine is used to evaluate the

appropriate material property for all materials labeled as USER on the material data

card; the user assigned material name allows specific materials to be identified within

each subroutine.

Density

The density for each material is evaluated with a subroutine of the following form:

SUBROUTINE USRDEN (RHO, TEMP, SPEC, XIP, YIP, ZIP, NAME, NUMIPT,

* MXSPEC, NSPEC, TIME, KSTEP, RCONST, ICONST)

C

C **

C

CHARACTER*20 NAME

chapter 3.tex Revision : 1.1

54 CHAPTER 3. INPUT GUIDE

C

DIMENSION RHO(*), TEMP(*), SPEC(MXSPEC,*)

DIMENSION XIP(*), YIP(*), ZIP(*)

DIMENSION RCONST(*), ICONST(*)

C

C **

C

C FORTRAN coding to evaluate the density at the element

C integration points for each material

C

RETURN

END

where the variables in the subroutine parameter list are

RHO(NUMIPT) : an array containing integration point values of the material density (out-

put).

TEMP(NUMIPT) : an array containing integration point values of the temperature (input).

SPEC(MXSPEC,NUMIPT) : an array containing integration point values of the chemical species

concentrations for this material (input).

XIP(NUMIPT), YIP(NUMIPT), ZIP(NUMIPT) : arrays containing integration point values of

the x, y and z coordinates (input).

NAME : a character variable specifying the material name (input).

NUMIPT : an integer specifying the number of integration points in the element (input).

MXSPEC : an integer specifying the maximum number of chemical species in any material

(input).

NSPEC : an integer specifying the number of chemical species in the current material

(input).

TIME : the value of the current time (input).

KSTEP : an integer specifying the number of the current iteration cycle or time step (input).

RCONST(*) : an array containing (real) user defined constants

ICONST(*) : an array containing (integer) user defined constants

Revision : 1.1 chapter 3.tex

3.11. USER SUPPLIED SUBROUTINES 55

Specific Heat

The specific heat for each material is evaluated with a subroutine of the following form:

SUBROUTINE USRCP (CP, TEMP, SPEC, XIP, YIP, ZIP, NAME, NUMIPT,

* MXSPEC, NSPEC, TIME, KSTEP, RCONST, ICONST)

C

C **

C

CHARACTER*20 NAME

C

DIMENSION CP(*), TEMP(*), SPEC(MXSPEC,*)

DIMENSION XIP(*), YIP(*), ZIP(*)

DIMENSION RCONST(*), ICONST(*)

C

C **

C

C FORTRAN coding to evaluate the specific heat at the element

C integration points for each material

C

RETURN

END

where the variables in the subroutine parameter list are

CP(NUMIPT) : an array containing integration point values of the material specific heat

(output).

TEMP(NUMIPT) : an array containing integration point values of the temperature (input).

SPEC(MXSPEC,NUMIPT) : an array containing integration point values of the chemical species

concentrations for this material (input).

XIP(NUMIPT), YIP(NUMIPT), ZIP(NUMIPT) : arrays containing integration point values of

the x, y and z coordinates (input).

NAME : a character variable specifying the material name (input).

NUMIPT : an integer specifying the number of integration points in the element (input).

MXSPEC : an integer specifying the maximum number of chemical species in any material

(input).

chapter 3.tex Revision : 1.1

56 CHAPTER 3. INPUT GUIDE

NSPEC : an integer specifying the number of chemical species in the current material

(input).

TIME : the value of the current time (input).

KSTEP : an integer specifying the number of the current iteration cycle or time step (input).

RCONST(*) : an array containing (real) user defined constants

ICONST(*) : an array containing (integer) user defined constants

Conductivity

The thermal conductivity for each material is evaluated with a subroutine of the following

form:

SUBROUTINE USRCON (COND11, COND22, COND33, TEMP, SPEC, XIP, YIP,

* ZIP, NAME, NUMIPT, MXSPEC, NSPEC, TIME, KSTEP,

* RCONST, ICONST)

C

C **

C

CHARACTER*20 NAME

C

DIMENSION COND11(*), COND22(*), COND33(*)

DIMENSION TEMP(*), SPEC(MXSPEC,*)

DIMENSION XIP(*), YIP(*), ZIP(*)

DIMENSION RCONST(*), ICONST(*)

C

C **

C

C FORTRAN coding to evaluate the thermal conductivity at the element

C integration points for each material

C

RETURN

END

where the variables in the subroutine parameter list are

COND11(NUMIPT), COND22(NUMIPT), COND33(NUMIPT) : arrays containing integration point

values of the principle thermal conductivities k11, k22 and k33 for the material

(output). For isotropic materials set COND22=COND33=COND11; for two-dimensional

problems COND33 need not be evaluated.

Revision : 1.1 chapter 3.tex

3.11. USER SUPPLIED SUBROUTINES 57

TEMP(NUMIPT) : an array containing integration point values of the temperature (input).

SPEC(MXSPEC,NUMIPT) : an array containing integration point values of the chemical species

concentrations for this material (input).

XIP(NUMIPT), YIP(NUMIPT), ZIP(NUMIPT) : arrays containing integration point values of

the x, y and z coordinates (input).

NAME : a character variable specifying the material name (input).

NUMIPT : an integer specifying the number of integration points in the element (input).

MXSPEC : an integer specifying the maximum number of chemical species in any material

(input).

NSPEC : an integer specifying the number of chemical species in the current material

(input).

TIME : the value of the current time (input).

KSTEP : an integer specifying the number of the current iteration cycle or time step (input).

RCONST(*) : an array containing (real) user defined constants

ICONST(*) : an array containing (integer) user defined constants

Tensor Rotation

The local orientation of the conductivity tensor for each anisotropic material is evaluated

with a subroutine of the following form:

SUBROUTINE USRROT (XXHAT, YXHAT, ZXHAT, XYHAT, YYHAT, ZYHAT, XIP,

* YIP, ZIP, NAME, NUMIPT, TIME, KSTEP, RCONST,

* ICONST)

C

C **

C

CHARACTER*20 NAME

C

DIMENSION XXHAT(*), YXHAT(*), ZXHAT(*)

DIMENSION XYHAT(*), YYHAT(*), ZYHAT(*)

DIMENSION XIP(*), YIP(*), ZIP(*)

DIMENSION RCONST(*), ICONST(*)

C

chapter 3.tex Revision : 1.1

58 CHAPTER 3. INPUT GUIDE

C **

C

C FORTRAN coding to evaluate the orientation of the principle material

C axes with respect to the global coordinate frame at the element

C integration points for each material

C

RETURN

END

where the variables in the subroutine parameter list are

XXHAT(NUMIPT), YXHAT(NUMIPT), ZXHAT(NUMIPT) : arrays containing integration point val-

ues of the x, y, z projection of a vector in the positive x̂ direction. The x, y, z axes

denote the global reference frame and the x̂, ŷ, ẑ axes are the principle material

axes. For two-dimensional problems only the XXHAT and YXHAT variables need to be

evaluated. See Section 3.4 for a further discussion of the reference frames.

XYHAT(NUMIPT), YYHAT(NUMIPT), ZYHAT(NUMIPT) : arrays containing integration point val-

ues of the x, y, z projection of a vector in the positive ŷ direction. The x, y, z axes

denote the global reference frame and the x̂, ŷ, ẑ axes are the principle material

axes. For two-dimensional problems these variables need not be evaluated. See

Section 3.4 for a further discussion of the reference frames.

XIP(NUMIPT), YIP(NUMIPT), ZIP(NUMIPT) : arrays containing integration point values of

the x, y and z coordinates (input).

NAME : a character variable specifying the material name (input).

NUMIPT : an integer specifying the number of integration points in the element (input).

TIME : the value of the current time (input).

KSTEP : an integer specifying the number of the current iteration cycle or time step (input).

RCONST(*) : an array containing (real) user defined constants

ICONST(*) : an array containing (integer) user defined constants

Enthalpy

Change of phase problems may require the enthalpy of the material to be specified as a

function of the temperature and/or chemical composition. The enthalpy is evaluated for

each material with a subroutine of the following form:

Revision : 1.1 chapter 3.tex

3.11. USER SUPPLIED SUBROUTINES 59

SUBROUTINE USRENT (ENT, TEMP, SPEC, XIP, YIP, ZIP, NAME, NUMIPT,

* MXSPEC, NSPEC, TIME, KSTEP, RCONST, ICONST)

C

C **

C

CHARACTER*20 NAME

C

DIMENSION ENT(*), TEMPS(*), SPEC(MXSPEC,*)

DIMENSION XIP(*), YIP(*), ZIP(*)

DIMENSION RCONST(*), ICONST(*)

C

C **

C

C FORTRAN coding to evaluate the enthalpy at the element

C integration points for each material

C

RETURN

END

where the variables in the subroutine parameter list are

ENT(NUMIPT) : an array containing integration point values of the material enthalpy (out-

put).

TEMP(NUMIPT) : an array containing integration point values of the temperature (input).

SPEC(MXSPEC,NUMIPT) : an array containing integration point values of the chemical species

concentrations for this material (input).

XIP(NUMIPT), YIP(NUMIPT), ZIP(NUMIPT) : arrays containing integration point values of

the x, y and z coordinates (input).

NAME : a character variable specifying the material name (input).

NUMIPT : an integer specifying the number of integration points in the element (input).

MXSPEC : an integer specifying the maximum number of chemical species in any material

(input).

NSPEC : an integer specifying the number of chemical species in the current material

(input).

TIME : the value of the current time (input).

KSTEP : an integer specifying the number of the current iteration cycle or time step (input).

chapter 3.tex Revision : 1.1

60 CHAPTER 3. INPUT GUIDE

RCONST(*) : an array containing (real) user defined constants

ICONST(*) : an array containing (integer) user defined constants

Emissivity

Though the surface emissivity is a material property, it occurs in the thermal diffusion

problem only in conjunction with boundary conditions. Unlike the other material proper-

ties that are evaluated at element integration points, the emissivity is evaluated at nodal

points on the surface or edge of an element. The surface emissivity for each material is

evaluated with a subroutine of the following form:

SUBROUTINE USREMS (EMISS, TEMPS, XS, YS, ZS, NAME, NNODES, TIME,

* KSTEP, RCONST, ICONST)

C

C **

C

CHARACTER*20 NAME

C

DIMENSION EMISS(*), TEMPS(*)

DIMENSION XS(*), YS(*), ZS(*)

DIMENSION RCONST(*), ICONST(*)

C

C **

C

C FORTRAN coding to evaluate the emissivity at the element surface

C or edge nodes for each material

C

RETURN

END

where the variables in the subroutine parameter list are

EMISS(NNODES) : an array containing surface/edge node values of the material surface

emissivity (output).

TEMPS(NNODES) : an array containing surface/edge node values of the temperature (input).

XS(NNODES), YS(NNODES), ZS(NNODES) : arrays containing surface/edge node values of the

x, y and z coordinates (input).

Revision : 1.1 chapter 3.tex

3.11. USER SUPPLIED SUBROUTINES 61

NAME : a character variable specifying the material name (input).

NNODES : an integer specifying the number of nodes on the element surface/edge (input).

TIME : the value of the current time (input).

KSTEP : an integer specifying the number of the current iteration cycle or time step (input).

RCONST(*) : an array containing (real) user defined constants

ICONST(*) : an array containing (integer) user defined constants

Chemistry

The use of reactive materials may require that the chemical reaction rates be speci-

fied through a user subroutine. The selection of this option is accomplished by setting

the USER parameter on the REACtive MIXture card (Section 3.3) and supplying a

subroutine of the following form:

SUBROUTINE USRRR (RRATES,AK,TEMP,SPEC,NAME,NUMIPT,MXSPEC,MXREAC,

* NSPEC,NREAC,STERIC,PREX,AENRGY,AMUSP,RCONST,ICONST)

C

C **

C

CHARACTER*20 NAME

C

DIMENSION RRATES(MXREAC,*), AK(MXREAC,*)

DIMENSION TEMP(*), SPEC(MXSPEC,*)

DIMENSION STERIC(*), PREX(*)

DIMENSION AENRGY(*), AMUSP(MXSPEC,*)

DIMENSION RCONST(*), ICONST(*)

C

C **

C

C USER SUPPLIED FORTRAN CODE TO EVALUATE THE REACTION RATES

C FOR ALL REACTIONS IN A MATERIAL

C

RETURN

END

where the variables in the subroutine parameter list are

chapter 3.tex Revision : 1.1

62 CHAPTER 3. INPUT GUIDE

RRATES(NUMIPT) : an array containing integration point values of the chemical reaction

rates (output).

AK(MXREAC,NUMIPT) : an array containing integration point values of the kinetic coefficients

for the current material (output).

TEMP(NUMIPT) : an array containing integration point values of the temperature (input).

SPEC(MXSPEC,NUMIPT) : an array containing integration point values of the chemical species

concentrations for this material (input).

NAME : a character variable specifying the material name (input).

NUMIPT : an integer specifying the number of integration points in the element (input).

MXSPEC : an integer specifying the maximum number of chemical species in any material

(input).

NSPEC : an integer specifying the number of chemical species in the current material

(input).

NREAC : an integer specifying the number of chemical reactions in the current material

(input).

STERIC(NUMIPT) : an array specifying the steric coefficients for the current material (in-

put).

PREX(NUMIPT) : an array specifying the pre-exponential factors for the current material

(input).

AENRGY(NUMIPT) : an array specifying the activation energy for the current material (in-

put).

AMUSP : an array specifying the activation energy for the current material (input).

RCONST(*) : an array containing (real) user defined constants

ICONST(*) : an array containing (integer) user defined constants

3.11.2 Volumetric Sources

When the volumetric heating parameter, VOLume HEATing (see Section 3.3) for one

or more materials is set to USER, then COYOTE expects a source subroutine (USRVHS)

to be supplied by the user. This subroutine must have the following form:

Revision : 1.1 chapter 3.tex

3.11. USER SUPPLIED SUBROUTINES 63

SUBROUTINE USRVHS (VOLHT, TEMP, XIP, YIP, ZIP, NAME, NUMIPT,

* TIME, KSTEP, RCONST, ICONST)

C

C **

C

CHARACTER*20 NAME

C

DIMENSION VOLHT(*), TEMP(*)

DIMENSION XIP(*), YIP(*), ZIP(*)

DIMENSION RCONST(*), ICONST(*)

C

C **

C

C FORTRAN coding to evaluate the volumetric heat source at the

C element integration points for each material

C

RETURN

END

where the variables in the subroutine parameter list are

VOLHT(NUMIPT) : an array containing integration point values of the volumetric source

(output).

TEMP(NUMIPT) : an array containing integration point values of the temperature (input).

XIP(NUMIPT), YIP(NUMIPT), ZIP(NUMIPT) : arrays containing integration point values of

the x, y and z coordinates (input).

NAME : a character variable specifying the material name (input).

NUMIPT : an integer specifying the number of integration points in the element (input).

TIME : the value of the current time (input).

KSTEP : an integer specifying the number of the current iteration cycle or time step (input).

RCONST(*) : an array containing (real) user defined constants

ICONST(*) : an array containing (integer) user defined constants

chapter 3.tex Revision : 1.1

64 CHAPTER 3. INPUT GUIDE

3.11.3 Material Velocity

Simple velocity fields for one or more blocks of elements can usually be supplied directly

to COYOTE through the VELocity data card that is defined in Section 3.4. More

complex velocity fields, for either Eulerian or Lagrangian descriptions, require the use of

a user supplied subroutine. This option is invoked by setting the velocity specification

parameter on the VELocity data to USER and supplying COYOTE with a subroutine

of the following form:

SUBROUTINE USRVEL (IDBLK, NNODES, XNODE, YNODE, ZNODE, UVEL, VVEL,

* WVEL, TIME, RCONST, ICONST)

C

C **

C

DIMENSION XNODE(*), YNODE(*), ZNODE(*)

DIMENSION UVEL(*), VVEL(*), WVEL(*)

DIMENSION RCONST(*), ICONST(*)

C

C **

C

C FORTRAN coding to evaluate the components of the velocity vector

C for each node in an element

C

RETURN

END

where the variables in the subroutine parameter list are

IDBLK : an integer specifying the id for the current element block (input).

NNODES : an integer specifying the number of nodes in the element (input).

XNODE(NNODES), YNODE(NNODES), ZNODE(NNODES) : arrays containing node values of the x,

y and z coordinates (input).

UVEL(NNODES), VVEL(NNODES), WVEL(NNODES) : arrays containing node values of the x, y

and z velocity components (output).

TIME : the value of the current time (input).

RCONST(*) : an array containing (real) user defined constants

ICONST(*) : an array containing (integer) user defined constants

Revision : 1.1 chapter 3.tex

3.11. USER SUPPLIED SUBROUTINES 65

3.11.4 Boundary Conditions

Boundary conditions that vary as a simple function of time or temperature can generally

be specified with function data. Complex boundary conditions may require the use of

subroutines that describe the appropriate functional behavior of the boundary values or

required coefficients. These subroutines may also be used to modify boundary conditions

as a function of the iteration cycle and thereby improve convergence of the solution pro-

cess. When any of the boundary condition data cards include the USER specification, a

user subroutine of the appropriate type must be supllied to COYOTE. The correspon-

dence between a particular boundary condition and its variation is established through

the node set or side set parameter, which appears on the BCtype data card (Section 3.4).

All boundary conditions of the same type are evaluated via a single subroutine; the node

set or side set identification number allows specific boundary conditions to be identified

within the subroutine.

Temperature

A specified temperature (bcname=TEMPerature) for a group of nodal points is evaluated

by setting the bc specification parameter (Section 3.4) equal to USER and supplying a

subroutine of the following form:

SUBROUTINE USRT (TEMPBC, XNODE, YNODE, ZNODE, IDNSET, TIME,

* KSTEP, RCONST, ICONST)

C

C **

C

DIMENSION RCONST(*), ICONST(*)

C

C **

C

C FORTRAN coding to evaluate the temperature at a node

C

RETURN

END

where the variables in the subroutine parameter list are

TEMPBC : the temperature at the node (output).

chapter 3.tex Revision : 1.1

66 CHAPTER 3. INPUT GUIDE

XNODE, YNODE, ZNODE : nodal point values of the x, y and z coordinates (input).

IDNSET : an integer specifying the current node set id (input).

TIME : the value of the current time (input).

KSTEP : an integer specifying the number of the current iteration cycle or time step (input).

RCONST(*) : an array containing (real) user defined constants

ICONST(*) : an array containing (integer) user defined constants

Heat Source

A specified heat source (bcname=HEAT SOURce) for a group of nodal points is evaluated

by setting the bc specification parameter (Section 3.4) equal to USER and supplying a

subroutine of the following form:

SUBROUTINE USRQ (QBC, TNODE, XNODE, YNODE, ZNODE, IDNSET, TIME,

* KSTEP, RCONST, ICONST)

C

C **

C

DIMENSION RCONST(*), ICONST(*)

C

C **

C

C FORTRAN coding to evaluate the heat source at a node

C

RETURN

END

where the variables in the subroutine parameter list are

QBC : the heat source at the node (output).

TNODE : the temperature at the node (input).

XNODE, YNODE, ZNODE : nodal point values of the x, y and z coordinates (input).

IDNSET : an integer specifying the current node set id (input).

TIME : the value of the current time (input).

Revision : 1.1 chapter 3.tex

3.11. USER SUPPLIED SUBROUTINES 67

KSTEP : an integer specifying the number of the current iteration cycle or time step (input).

RCONST(*) : an array containing (real) user defined constants

ICONST(*) : an array containing (integer) user defined constants

Heat Flux

An applied heat flux (bcname=HEAT FLUX) for an element edge or element surface

is evaluated by setting the bc specification parameter (Section 3.4) equal to USER and

supplying a subroutine of the following form:

SUBROUTINE USRFLX (FLUX, TEMPS, XS, YS, ZS, NNODES, IDSSET, TIME,

* KSTEP, RCONST, ICONST)

C

C **

C

DIMENSION FLUX(*), TEMPS(*)

DIMENSION XS(*), YS(*), ZS(*)

DIMENSION RCONST(*), ICONST(*)

C

C **

C

C FORTRAN coding to evaluate the applied heat flux at the element

C edge or surface nodes for each side set

C

RETURN

END

where the variables in the subroutine parameter list are

FLUX(NNODES) : an array containing nodal point values of the applied heat flux (output).

TEMPS(NNODES) : an array containing nodal point values of the temperature (input).

XS(NNODES), YS(NNODES), ZS(NNODES) : arrays containing nodal point values of the x, y

and z coordinates (input).

NNODES : an integer specifying the number of the nodes on the element edge or surface

(input).

IDSSET : an integer specifying the current side set id (input).

chapter 3.tex Revision : 1.1

68 CHAPTER 3. INPUT GUIDE

TIME : the value of the current time (input).

KSTEP : an integer specifying the number of the current iteration cycle or time step (input).

RCONST(*) : an array containing (real) user defined constants

ICONST(*) : an array containing (integer) user defined constants

Convective Heat Flux

The use of convection boundary condition (bcname=CONVection) may require that the

variation of the heat transfer coefficient and/or the reference temperature be specified

through a user subroutine. The heat transfer coefficient for an element edge or surface

is evaluated by setting COEFficient=USER (Section 3.4) and supplying a subroutine of

the following form:

SUBROUTINE USRHTC (HCOEF, TEMPS, TREF, XS, YS, ZS, NNODES, IDSSET,

* TIME, KSTEP, RCONST, ICONST)

C

C **

C

DIMENSION HCOEF(*), TEMPS(*), TREF(*)

DIMENSION XS(*), YS(*), ZS(*)

DIMENSION RCONST(*), ICONST(*)

C

C **

C

C FORTRAN coding to evaluate the heat transfer coefficient at the

C element edge or surface nodes for each side set

C

RETURN

END

where the variables in the subroutine parameter list are

HCOEF(NNODES) : an array containing nodal point values of the heat transfer coefficient

(output).

TEMPS(NNODES) : an array containing nodal point values of the temperature (input).

TREF(NNODES) : an array containing nodal point values of the reference temperature (in-

put).

Revision : 1.1 chapter 3.tex

3.11. USER SUPPLIED SUBROUTINES 69

XS(NNODES), YS(NNODES), ZS(NNODES) : arrays containing nodal point values of the x, y

and z coordinates (input).

NNODES : an integer specifying the number of the nodes on the element edge or surface

(input).

IDSSET : an integer specifying the current side set id (input).

TIME : the value of the current time (input).

KSTEP : an integer specifying the number of the current iteration cycle or time step (input).

RCONST(*) : an array containing (real) user defined constants

ICONST(*) : an array containing (integer) user defined constants

The reference temperature for convection on an element edge or surface is evaluated

by setting TREFerence=USER (Section 3.4) and supplying a subroutine of the following

form:

SUBROUTINE USRTRC (TREF, TEMPS, XS, YS, ZS, NNODES, IDSSET, TIME,

* KSTEP, RCONST, ICONST)

C

C **

C

DIMENSION TREF(*), TEMPS(*)

DIMENSION XS(*), YS(*), ZS(*)

DIMENSION RCONST(*), ICONST(*)

C

C **

C

C FORTRAN coding to evaluate the reference temperature for

C convection at the element edge or surface nodes for each side set

C

RETURN

END

where the variables in the subroutine parameter list are

TREF(NNODES) : an array containing nodal point values of the reference temperature (out-

put).

TEMPS(NNODES) : an array containing nodal point values of the temperature (input).

chapter 3.tex Revision : 1.1

70 CHAPTER 3. INPUT GUIDE

XS(NNODES), YS(NNODES), ZS(NNODES) : arrays containing nodal point values of the x, y

and z coordinates (input).

NNODES : an integer specifying the number of the nodes on the element edge or surface

(input).

IDSSET : an integer specifying the current side set id (input).

TIME : the value of the current time (input).

KSTEP : an integer specifying the number of the current iteration cycle or time step (input).

RCONST(*) : an array containing (real) user defined constants

ICONST(*) : an array containing (integer) user defined constants

Radiative Heat Flux

The use of radiation boundary condition (bcname=RADiation) may require that the vari-

ation of the radiation form factor and/or the reference temperature be specified through

a user subroutine. The form factor for an element edge or surface is evaluated by setting

COEFficient=USER (Section 3.4) and supplying a subroutine of the following form:

SUBROUTINE USRFF (FORMF, TEMPS, EMISS, XS, YS, ZS, NNODES, IDSSET,

* TIME, KSTEP, RCONST, ICONST)

C

C **

C

DIMENSION FORMF(*), TEMPS(*), EMISS(*)

DIMENSION XS(*), YS(*), ZS(*)

DIMENSION RCONST(*), ICONST(*)

C

C **

C

C FORTRAN coding to evaluate the radiation form factor at the

C element edge or surface nodes for each side set

C

RETURN

END

where the variables in the subroutine parameter list are

Revision : 1.1 chapter 3.tex

3.11. USER SUPPLIED SUBROUTINES 71

FORMF(NNODES) : an array containing nodal point values of the radiation form factor (out-

put).

TEMPS(NNODES) : an array containing nodal point values of the temperature (input).

EMISS(NNODES) : an array containing nodal point values of the surface emissivity (input).

These values are supplied only if emissivity data has been supplied with the material

property specification.

XS(NNODES), YS(NNODES), ZS(NNODES) : arrays containing nodal point values of the x, y

and z coordinates (input).

NNODES : an integer specifying the number of the nodes on the element edge or surface

(input).

IDSSET : an integer specifying the current side set id (input).

TIME : the value of the current time (input).

KSTEP : an integer specifying the number of the current iteration cycle or time step (input).

RCONST(*) : an array containing (real) user defined constants

ICONST(*) : an array containing (integer) user defined constants

The reference temperature for radiation on an element edge or surface is evaluated

by setting TREFerence=USER (Section 3.4) and supplying a subroutine of the following

form:

SUBROUTINE USRTRR (TREF, TEMPS, XS, YS, ZS, NNODES, IDSSET, TIME,

* KSTEP, RCONST, ICONST)

C

C **

C

DIMENSION TREF(*), TEMPS(*)

DIMENSION XS(*), YS(*), ZS(*)

DIMENSION RCONST(*), ICONST(*)

C

C **

C

C FORTRAN coding to evaluate the reference temperature for

C radiation at the element edge or surface nodes for each side set

C

RETURN

END

chapter 3.tex Revision : 1.1

72 CHAPTER 3. INPUT GUIDE

where the variables in the subroutine parameter list are

TREF(NNODES) : an array containing nodal point values of the reference temperature (out-

put).

TEMPS(NNODES) : an array containing nodal point values of the temperature (input).

XS(NNODES), YS(NNODES), ZS(NNODES) : arrays containing nodal point values of the x, y

and z coordinates (input).

NNODES : an integer specifying the number of the nodes on the element edge or surface

(input).

IDSSET : an integer specifying the current side set id (input).

TIME : the value of the current time (input).

KSTEP : an integer specifying the number of the current iteration cycle or time step (input).

RCONST(*) : an array containing (real) user defined constants

ICONST(*) : an array containing (integer) user defined constants

Contact or Gap Heat Transfer

The use of a contact boundary condition (BCtype=CONTact) may require that the

variation of the effective heat transfer coefficient be specified through a user subroutine.

The selection of this option is accomplished by setting the parameter COEFfient=USER

(Section 3.4) and supplying a subroutine of the following form:

SUBROUTINE USRHTG (HCOEF, TEMPM, TEMPS, XS, YS, ZS, GAPS, NNODES,

* IDSSET,TIME, KSTEP, RCONST, ICONST)

C

C **

C

DIMENSION HCOEF(*), TEMPM(*), TEMPS(*)

DIMENSION XS(*), YS(*), ZS(*) ,GAPS(*)

DIMENSION RCONST(*), ICONST(*)

C

C **

C

C FORTRAN coding to evaluate the effective heat transfer coefficient

Revision : 1.1 chapter 3.tex

3.12. INITIAL CONDITIONS AND RESTARTS 73

C at the element edge or surface nodes for each contact surface

C

RETURN

END

where the variables in the subroutine parameter list are

HCOEF(NNODES) : an array containing nodal point values of the effective heat transfer

coefficient (output).

TEMPM(NNODES) : an array containing nodal point values of the temperature for the master

surface (input).

TEMPS(NNODES) : an array containing nodal point values of the temperature for the slave

surface (input).

XS(NNODES), YS(NNODES), ZS(NNODES) : arrays containing nodal point values of the x, y

and z coordinates (input).

GAPS(NNODES) : an array containing nodal point values of the separation distance (gap)

between the master and slave surfaces (input).

NNODES : an integer specifying the number of the nodes on the element edge or surface

(input).

IDSSET : an integer specifying the current side set id (input).

TIME : the value of the current time (input).

KSTEP : an integer specifying the number of the current iteration cycle or time step (input).

RCONST(*) : an array containing (real) user defined constants

ICONST(*) : an array containing (integer) user defined constants

3.12 Initial Conditions and Restarts

The analysis of a transient conduction or diffusion problem requires the specification

of a set of initial conditions for all of the dependent variables. For cases where the

temperature (and chemical composition) may be assumed uniform over each material,

the initial conditions may be set through the input parameters available in the material

data block (see Section 3.3). For problems in which the initial fields are more complex,

chapter 3.tex Revision : 1.1

74 CHAPTER 3. INPUT GUIDE

COYOTE allows the initial conditions to be input from an external file. In order to be

compatible with COYOTE, the initial conditions must be written as a standard EXODUS

II [5] file. The mechanics of attaching a restart file to a COYOTE execution are described

in Section 4.3.

The output file containing the solutions generated by COYOTE has the same EXO-

DUS II format as the initial condition file. Therefore, solutions obtained from COYOTE

may generally be used directly as initial conditions for subsequent problems. An ex-

ception to this circumstance occurs for problems that include chemical reactions. The

current limitations of the EXODUS II format requires that species data be output as

element-based data that is uniform over the element volume (area). For purposes of

computation, the species are defined as unknowns at the element integration points and

are not uniform over the element. This incompatibility prevents the species data from

being properly redistributed during a restart operation and this option is therefore not

allowed in the present version of COYOTE.

The fact that the input and output files for the solution share a common format means

that the code can be easily restarted from a particular point in a previous solution. Such

a procedure consists of attaching a previous solution file, re-executing the input file

and specifying within the solution data block (see Section 3.5) the iteration/timeplane

number or time at which the solution is to be restarted. The input file must be re-executed

since there is no explicit provision made for storing all of the data from a previous run.

Typically, the computation time for problem setup and initialization is small enough that

the storage of this information for a possible restart operation is not warranted. Note

that when restarts are carried out using the above procedure, the resulting solution file

contains the time history of the problem only from the restart timeplane.

3.13 Error Messages

COYOTE contains a number of error checks and tests for bad or inconsistent data, storage

problems, etc. When an error is encountered, an error message and other pertinent data

are printed and the program is terminated with a STOP ERROR. The error citations

usually contain sufficient information to allow the problem to be diagnosed and corrected.

For each listed error condition, the subroutine encountering the error is given along with

an explanatory message. Also, any relevant integers, floating point data and/or character

data that help to explain the problem are output by the code.

The general format for error messages takes the following form,

ERROR FOUND IN - ‘‘SUBROUTINE NAME’’

Revision : 1.1 chapter 3.tex

3.13. ERROR MESSAGES 75

DESCRIPTION - ‘‘ERROR MESSAGE’’

RELEVANT PARAMETERS -

MESSAGE 1 = ‘‘INTEGER DATA’’

MESSAGE 2 = ‘‘INTEGER DATA’’

MESSAGE 3 = ‘‘FLOATING POINT DATA’’

MESSAGE 4 = ‘‘FLOATING POINT DATA’’

MESSAGE 5

MESSAGE 6 = ‘‘CHARACTER DATA’’

chapter 3.tex Revision : 1.1

76 CHAPTER 3. INPUT GUIDE

Revision : 1.1 chapter 4.tex

Chapter 4

Code Installation and Access

The use of a program such as COYOTE generally requires some knowledge of how the

program is installed and operates on a specific computer system. In particular, details

regarding the use of system and utility libraries, file usage, file formats, FORTRAN coding

standards and access to the program are important to the successful and efficient use of

the code. These topics become especially critical when the code is used for the analysis

of very complex problems, when the code is modified for a new application or when the

program is transported to a new computer system. In the following chapters, all of the

above topics are discussed in some detail. The main emphasis will be on the operation of

COYOTE on the Sandia National Laboratories computer systems; the operation of the

code on other computers should involve only minor alterations to the code and operating

procedures.

4.1 FORTRAN Coding and System Dependencies

The major part of the COYOTE program is written in ANSI standard Fortran 77 and

should therefore be usable on any computer system that supports such a compiler. The

iterative matrix solver used in COYOTE resides in a general software package devel-

oped by Shadid and Schunk [8] and is written in standard C. The enclosure radiation

algorithms contained in the program CHAPARRAL by Glass [6] contain both Fortran

and C components. The compilation and linking of the various COYOTE modules is

most conveniently handled through a standard UNIX makefile which is available with

the source distribution of the code.

As indicated in Section 2.2, COYOTE is a modular program that consists of a main

driver routine and a number of subordinate, task oriented subroutines and utilities. Com-

chapter 4.tex 77 Revision : 1.1

78 CHAPTER 4. CODE INSTALLATION AND ACCESS

munication between the main program and the various subroutines is accomplished pri-

marily through named common blocks and subroutine parameter lists. Named common

blocks generally contain pointers, option flags, sizing parameters and data that is invari-

ant with respect to problem specification. Data that is stored in vectors and arrays are

normally passed through subroutine parameter lists due to the use of a dynamic memory

allocation scheme that is described below. A description of all of the major common

blocks and arrays used in COYOTE is included in Appendix D. This information would

normally be of value only if the code is to be modified.

A dynamic dimensioning procedure is used in COYOTE to allocate and release com-

puter memory during program execution. Under this algorithm the individual vectors

and arrays needed by the program are stored in (noncontiguous) blocks of memory under

a single vector name. Pointers indicating the location of individual arrays within memory

are maintained by the memory manager as is the allocation of needed storage space. All

memory allocation is performed in the main program. Further details on the memory

manager and its operation are given in [10]. Some computer systems may not permit

execution-time changes in memory allocation; modifications to the code and memory

manager to handle this circumstance are outlined in [10].

COYOTE also makes use of a few system dependent utilities. To increase portability

of the code all of the system dependencies have been isolated in a few subroutines that are

located in a utility library that accompanies the main code. The utilities available in the

SUPES library [10] include date and time stamping, the memory manager and parsing

of input for use in the free field input routines. These library routines are available for

a number of commonly used computer systems and are heavily commented to ease the

task of converting these utilities to other, nonsupported computers.

The pre- and postprocessing files currently used by COYOTE are in the EXODUS II

format [5], which is a random access file structure based on NetCDF [11]. Access to these

files is accomplished through a library of C subroutines that read and write data in the

specified format. All of the mesh generation programs and graphics packages that are

to be used in conjunction with COYOTE must provide data in the EXODUS II format.

The contents of an EXODUS II file are summarized in Appendices E and F and are given

in more detail in [5].

The standard version of COYOTE was developed for use on a spectrum of computer

systems ranging from large vector supercomputers to engineering workstations. The code

is also suitable for smaller computer systems, provided that the memory is sufficient to

handle the required problem size. There are relatively few built-in limits in COYOTE

with respect to the size or complexity of the heat conduction model. The code is designed

to handle problems with an arbitrary number of elements, materials, boundary condi-

tions, etc. up to the capacity of the computer memory. The largest portion of memory

Revision : 1.1 chapter 4.tex

4.2. FILE FORMATS 79

is used for the storage of the assembled global diffusion matrix; this array is stored in a

sparse matrix format [8,12] suitable for use with the iterative matrix solver.

4.2 File Formats

The disk files used internally by COYOTE are generally sequential access, unformatted

files. The specific form of these files is not usually of concern to the user except for the

pre- and postprocessing files and the restart (or solution) file (see Section 3.12).

As noted in the previous chapter, the pre- and postprocessing files utilize the EX-

ODUS II format. Within COYOTE the pre- and post processing files are maintained

separately to allow for reuse, though they share a substantial amount of data. The

pre-processing file contains information from the mesh generator regarding element coor-

dinates, connectivity, element types and boundary condition flags (see Appendix E). The

postprocessing file contains a copy of the pre-processing data in addition to the computed

solution variables (see Appendix F). Instructions for accessing EXODUS II data through

the subroutine interface is available in [5].

4.3 File Usage

COYOTE makes use of a series of disk files for the storage of large blocks of input and

element data, storage of solution vectors and input and output functions. All of the files

used by the program are listed in Table 4.1 with a brief description of their function, their

internal FORTRAN identification and format type. Specific formats for these files are

not given as that information is readily available from a code listing. Previous chapters

have commented on those file formats that would normally be of concern to the user.

When files are to be attached to a COYOTE job or saved after processing, the unit

numbers used in the job control statements must conform to those indicated in the

table. File names are arbitrary but must conform to the syntax rules for the particular

operating system. The proper relation between file name and unit number must also be

established in the job control statements. A utility program from the SUPES library

[10] obtains needed file names from the operating system for use in opening files during

program execution. As described in the next chapter, a script is available for COYOTE

that simplifies the association of local file names with unit numbers. Note that within

COYOTE all files are opened in the OPNFIL subroutine.

chapter 4.tex Revision : 1.1

80 CHAPTER 4. CODE INSTALLATION AND ACCESS

4.4 Access to the Code

A source version of COYOTE is maintained on the Network Storage System (NSS)

of the Central Computer Facility at Sandia National Laboratories and on the Local

Area Networks (LANs) operated by the Engineering Sciences Center, 1500. The current

location of the program source code for any particular computer system may be obtained

from the authors.

The utility libraries needed for the execution of COYOTE are available for several

computer systems. Access to these routines varies depending on the particular operating

system. Instructions for accessing and loading these routines are available in [5,6,8,10].

The required libraries include the CHAPARRAL radiation routines, the EXODUS II file

access routines, the iterative matrix solution package and the SUPES utilities. When

user supplied subroutines are employed with COYOTE they must be compiled and then

made available to the loader as a library to be searched for unsatisfied external references.

To simplify this compiling and loading process, a series of standard UNIX makefiles are

available for COYOTE and its required libraries. The makefiles for various computer

environments at Sandia are located with the source code and may be obtained from the

authors.

In order to assist users in the running of COYOTE, a UNIX script is also available on

the 1500 LAN’s and through the SEACAS system [13]. This script has a standard UNIX,

single-line, input style and allows execution of the code in either a batch or interactive

mode on the host computer.

Revision : 1.1 chapter 4.tex

4.4. ACCESS TO THE CODE 81

Unit Fortran

Number Name/ID File Usage File Access File Format

5 NIN Input file Sequential Coded

6 NOUT Output file Sequential Coded

10 NTP0 EXODUS II input data Random Access Binary

11 NTP1 Free field input Sequential Binary

12 NTP2 EXODUS II output data Random Access Binary

13 NTP3 EXODUS II external data Random Access Binary

14 NTP4 EXODUS II restart data Random Access Binary

15 NTP5 Unused Binary

Table 4.1: Files used in COYOTE

chapter 4.tex Revision : 1.1

82 CHAPTER 4. CODE INSTALLATION AND ACCESS

Revision : 1.1 chapter 5.tex

Chapter 5

Example Problems

A series of three problems have been included in this chapter to demonstrate the use

of the previously described data cards and a few of the capabilities of the COYOTE

program. Though the examples were designed to illustrate the basic features of the code,

all possible options and subtleties of the program could not be covered. A more extensive

demonstration of the use of COYOTE is available in [4].

5.1 Problem 1 - Finned Radiator

The first example problem consists of the finned tube radiator chapter shown in Figure 5.1

and was chosen to illustrate the use of a simple time dependent boundary condition.

Symmetry considerations allowed the physical model in Figure 5.1 to be reduced to the

three-dimensional, finite element model shown in Figure 5.2. Note that this model could

have been reduced to a planar, two-dimensional geometry. The radiator is assumed to

be at an initial temperature of 100◦ F. The temperature of the inside surface of the

aluminum tube is maintained at 100◦ F while the outside surfaces of the radiator are

subjected to the heat flux history shown in Figure 5.2. The planes of symmetry and the

front and back surfaces of the model are treated as insulated. The thermal properties for

the aluminum are also listed in Figure 5.2.

chapter 5.tex 83 Revision : 1.1

84 CHAPTER 5. EXAMPLE PROBLEMS

Figure 5.1: Schematic of finned radiator problem.

Revision : 1.1 chapter 5.tex

5.1. PROBLEM 1 - FINNED RADIATOR 85

The input data file for this problem is shown in Figure 5.3. The mesh was constructed

using the programs FASTQ [14] and GEN3D [15] and consists of eight-node hexahedral

elements with eight integration points in each element. The time dependent flux bound-

ary condition was specified through a TIMe FUNction data block in the input file. The

time integration method used for the transient analysis of the problem was the trapezoid

rule (predictor/corrector) with automatic time step control. Temperature results for each

time step were written to an EXODUS II file for post-processing. A typical result from

the transient analysis of this problem is shown in Figure 5.4 in the form of temperature

contours on the surface of the radiator. These plots were generated using the graphics

program BLOT [16].

Figure 5.2: Finite element model for finned radiator.

chapter 5.tex Revision : 1.1

86 CHAPTER 5. EXAMPLE PROBLEMS

5.2 Problem 2 - Volume Heating in a Cylinder

The second example problem considers a simplified one-dimensional model of an ax-

isymmetric, two-dimensional geometry and allows the demonstration of a user supplied

subroutine. A cylindrical region of heat generating material is encased by a thin layer of

low conductivity material and a thicker layer of material having a relatively high thermal

conductivity. The outer surface of the composite cylinder loses heat to the surrounding

environment by natural convection. The geometry, boundary conditions, and material

properties for this problem are shown in Figure 5.5. To estimate the radial temperature

profile through the cylinder, a one-dimensional chapter at the mid-height of the cylinder

is considered for the finite element model.

The input data file and user subroutine for this problem are listed in Figure 5.6 and 5.7.

The mesh is constructed of four-node quadrilateral elements with four integration points

in each element; the program FASTQ [14] was used to construct the mesh. The vol-

umetric heating history for the inner cylindrical region was specified through a TIMe

FUNction data block in the input file as shown in Figure 5.6. The heat transfer coeffi-

cient for the outside surface of the cylinder was provided in the user supplied subroutine

USRHTC. This subroutine contains correlations for laminar and turbulent natural con-

vection a long a vertical cylinder and selects the appropriate heat transfer coefficient

based on the current surface and film temperatures. The initial temperature of the cylin-

drical region was set at 20◦ C; the reference temperature for the convection process was

also 20◦ C.

The time integration method used for the transient analysis of this problem was the

trapezoid rule with the predictor/corrector option and the automatic time step selection.

The time dependent response of the cylinder was computed for 30 seconds, during which

time the volume heating was held at two different levels and then turned off. The resulting

temperature histories at several radial positions are shown in Figure 5.8. This plot was

generated with the graphics program BLOT[16].

5.3 Problem 3 - Surface Heating of a Plate

The last example simulates the thermal response of a simple three-dimensional plate

that is subjected to a moving surface heat flux. A schematic of the problem is shown

in Figure 5.9. A cylindrical heat flux of constant magnitude is constrained to move at

a constant velocity on the square aluminum plate. The heat source travels through one

complete circular revolution and is then removed from the surface. The plate is assumed

Revision : 1.1 chapter 5.tex

5.3. PROBLEM 3 - SURFACE HEATING OF A PLATE 87

to be insulated and loses no energy through any of its surfaces. The plate is initially at

a uniform temperature of 20◦ C.

The input data file for the COYOTE analysis of this problem is shown in Figure 5.10.

The mesh of eight-node hexahedral elements was generated with the FASTQ [14] and

GEN3D [15] programs. The moving heat flux was described in the user supplied sub-

routine USRFLX which is listed in Figure 5.11. A number of USER CONstants were

defined to allow the parameters for the motion of the flux distribution to be defined

through the input file and avoid recompilation of the user subroutine.

The time dependent simulation of the plate was carried out for 150 seconds at which

point the plate returns to a uniform but higher temperature state. The simulation was

run using the automatic time step option and the trapezoid rule integration method. The

resulting temperature contours on the surface of the plate are shown in Figure 5.12 for a

series of times during simulation. The contour plots were generated with the BLOT code

[16]. A more extensive analysis of this problem is included in the COYOTE Example

Problems manual [4].

chapter 5.tex Revision : 1.1

88 CHAPTER 5. EXAMPLE PROBLEMS

TITLE

HEAT CONDUCTION IN A FINNED RADIATOR

END

MATERIAL,ALUMINUM

DENSITY=0.0978

SPECIFIC HEAT=0.208

CONDUCTIVITY=2.778E-3

INITIAL TEMPERATURE=100.

END

PROBLEM DEFINITION

GEOMETRY=3D

ELEMENT BLOCK=10,ALUMINUM

BCTYPE=TEMPERATURE,100,100.

BCTYPE=HEAT FLUX,500,TFUNCTION=100

END

SOLUTION,1,TIME DEPENDENT

INTEGRATION METHOD=TRAPEZOID

TIME STEP OPTION=AUTOSTEP

TIME STEP=0.05

INITIAL TIME=0.0

FINAL TIME=10.0

MINIMUM TIME STEP=.05

END

POST

NODAL DATA=TEMPERATURE

OUTPUT FREQUENCY=1

END

TIME FUNCTION=100

0.0,0.0

1.0,0.10

15.0,0.10

END

STOP

Figure 5.3: Input file for COYOTE simulation of a finned radiator.

Revision : 1.1 chapter 5.tex

5.3. PROBLEM 3 - SURFACE HEATING OF A PLATE 89

Figure 5.4: Temperature contours for finned radiator problem.

chapter 5.tex Revision : 1.1

90 CHAPTER 5. EXAMPLE PROBLEMS

Figure 5.5: Schematic of volume heated cylinder problem.

Revision : 1.1 chapter 5.tex

5.3. PROBLEM 3 - SURFACE HEATING OF A PLATE 91

TITLE

ONE-DIMENSIONAL CONDUCTION PROBLEM

VOLUMETRIC HEATING IN A CYLINDER .

FOUR NODE QUADRILATERAL ELEMENT .

END .

MATERIAL,MAT1 SOLUTION,1,TIME DEPENDENT

DENSITY=2.274E-3 INTEGRATION METHOD=TRAPEZOID

SPECIFIC HEAT=0.244 TIME STEP OPTION=AUTOSTEP

CONDUCTIVITY=0.01 TIME STEP=0.10

VOLUME HEATING=TFUNCTION,100 INITIAL TIME=0.0

INITIAL TEMPERATURE=20.0 FINAL TIME=30.0

END END

MATERIAL,MAT2 POST

DENSITY=1.081E-3 NODAL DATA=TEMPERATURE

SPECIFIC HEAT=0.122 OUTPUT FREQUENCY=1

CONDUCTIVITY=0.004 END

INITIAL TEMPERATURE=20.0 TIME FUNCTION=100

END 0.0,0.0

MATERIAL,MAT3 2.0,0.12

DENSITY=2.162E-3 11.0,0.12

SPECIFIC HEAT=0.244 12.0,0.18

CONDUCTIVITY=0.04 18.0,0.18

INITIAL TEMPERATURE=20.0 24.0,0.0

END 35.0,0.0

PROBLEM DEFINITION END

GEOMETRY=AXISYMMETRIC STOP

ELEMENT BLOCK=10,MAT1

ELEMENT BLOCK=20,MAT2

ELEMENT BLOCK=30,MAT3

BCTYPE=CONVECTION,10,COEFFICIENT=USER,,*

TREFERENCE=20.0

END

.

.

.

Figure 5.6: Input file for COYOTE simulation of a volume heated cylinder.

chapter 5.tex Revision : 1.1

92 CHAPTER 5. EXAMPLE PROBLEMS

SUBROUTINE USRHTC (HCOEF,TEMPS,TREF,XS,YS,ZS,NNODES,IDSSET,TIME,

* KSTEP,RCONST,ICONST)

C

C **

C

C DESCRIPTION:

C USER SUBROUTINE TO EVALUATE THE CONVECTIVE HEAT TRANSFER

C COEFFICIENT FOR AN ELEMENT SURFACE OR EDGE

C

C PARAMETERS:

C HCOEF (REAL) - Heat transfer coefficient evaluated at the

C element surface or edge nodes (output)

C TEMPS (REAL) - Temperatures at the element surface or edge

C nodes (input)

C TREF (REAL) - Reference temperatures for the element

C surface or edge nodes (input)

C XS,YS,ZS (REAL) - Coordinates for the element surface or edge

C nodes (input)

C NNODES (INTEGER) - Number of surface or edge nodes (input)

C IDSSET (INTEGER) - Boundary condition side set id (input)

C TIME (REAL) - Current time (input)

C KSTEP (INTEGER) - Current iteration/time step number (input)

C RCONST (REAL) - User constants (input)

C ICONST (INTEGER) - User constants (input)

C

C **

C

DIMENSION HCOEF(*), TEMPS(*), TREF(*)

DIMENSION XS(*), YS(*), ZS(*)

DIMENSION RCONST(*), ICONST(*)

C

C **

C

C THIS ROUTINE IS FOR THE FREE CONVECTION FLOW OF AIR ALONG A

C VERTICAL CYLINDRICAL SURFACE

C THE HEAT TRANSFER COEFFICIENT IS EVALUATED AT A HEIGHT AL (FT)

C AIR PROPERTIES ARE SPECIFIED IN ENGLISH UNITS

C THE HEAT TRANSFER COEFFICIENT IS COMPUTED IN BTU/HR-FT**2-F AND

C THEN CONVERTED TO METRIC UNITS AS USED IN THE PROBLEM DEFINITION

C

Figure 5.7: User subroutine for COYOTE simulation of a volume heated cylinder.

Revision : 1.1 chapter 5.tex

5.3. PROBLEM 3 - SURFACE HEATING OF A PLATE 93

AL = 1.5

G = 32.2

CONVERT = 5.678E-4

C

C LOOP ON EVALUATION POINTS

C

DO 10 I = 1,NNODES

TW = TEMPS(I)

TR = TREF(I)

C

C CONVERT TEMPERATURES TO FAHRENHEIT (RANKINE)

C AND EVALUATE AIR PROPERTIES AND GRASHOF NUMBER

C

DELT = (TW-TR)*(9./5.)

TFILM = ((TW+TR)*0.5 + 273.)*(9./5.)

C

BETA = 1./TFILM

AMU = (7.3094E-7)*((TFILM**1.5)/(TFILM+198.))

RHO = 39.68/TFILM

C

GR = ((RHO**2)*G*BETA*(AL**3)*DELT)/(AMU**2)

C

C EVALUATE HEAT TRANSFER COEFFICIENT - CORRELATION DUE TO McADAMS

C LAMINAR FLOW (GR < 1.0E9)

C TURBULENT FLOW (GR > 1.0E9)

C

IF (GR .LT. 1.0E4) THEN

HT = 0.0

ELSE IF (GR .GE. 1.0E4 .AND. GR .LT. 1.0E9) THEN

HT = .29*(DELT/AL)**.25

HT = HT * CONVERT

ELSE

HT = .19*(DELT**.333333)

HT = HT * CONVERT

END IF

C

HCOEF(I) = HT

10 CONTINUE

RETURN

END

Figure 5.7: Continuation of user subroutine for simulation of a volume heated cylinder.

chapter 5.tex Revision : 1.1

94 CHAPTER 5. EXAMPLE PROBLEMS

Figure 5.8: Temperature histories for volume heated cylinder problem.

Revision : 1.1 chapter 5.tex

5.3. PROBLEM 3 - SURFACE HEATING OF A PLATE 95

Figure 5.9: Schematic of plate heating problem.

chapter 5.tex Revision : 1.1

96 CHAPTER 5. EXAMPLE PROBLEMS

TITLE

MOVING HEAT SOURCE

CYLINDRICAL FLUX DISTRIBUTION MOVING IN A CIRCULAR PATH

ON A RECTANGULAR BLOCK OF ALUMINUM

EIGHT NODE HEXAHEDRAL ELEMENT

END

MATERIAL,ALUMINUM

DENSITY=0.0978

SPECIFIC HEAT=0.208

CONDUCTIVITY=2.778E-3

INITIAL TEMPERATURE=20.

END

PROBLEM DEFINITION

GEOMETRY=3D

ELEMENT BLOCK=10,ALUMINUM

BCTYPE=HEAT FLUX,100,USER

END

SOLUTION,1,TIME DEPENDENT

INTEGRATION METHOD=TRAPEZOID

TIME STEP OPTION=AUTOSTEP

TIME STEP=0.1

INITIAL TIME=0.0

FINAL TIME=150.0

NUMBER TIME STEP=500

INTEGRATION TOLERANCE=1.0E-3

END

POST

NODAL DATA=TEMPERATURE

OUTPUT FREQUENCY=1

END

USER CONSTANTS

USER REAL=1,3.0

USER REAL=2,0.1047198

USER REAL=3,1.00

USER REAL=4,60.0

USER REAL=5,0.10

END

STOP

Figure 5.10: Input file for COYOTE simulation of a surface heated plate.

Revision : 1.1 chapter 5.tex

5.3. PROBLEM 3 - SURFACE HEATING OF A PLATE 97

SUBROUTINE USRFLX (FLUX,TEMPS,XS,YS,ZS,NNODES,IDSSET,TIME,KSTEP,

* RCONST,ICONST)

C

C **

C

C DESCRIPTION:

C USER SUBROUTINE TO EVALUATE THE APPLIED HEAT FLUX FOR AN

C ELEMENT SURFACE OR EDGE

C

C PARAMETERS:

C FLUX (REAL) - Heat flux evaluated at the element surface or

C edge nodes (output)

C TEMPS (REAL) - Temperatures at the element surface or edge

C nodes (input)

C XS,YS,ZS (REAL) - Coordinates for the element surface or edge

C nodes (input)

C NNODES (INTEGER) - Number of surface or edge nodes (input)

C IDSSET (INTEGER) - Boundary condition side set id (input)

C TIME (REAL) - Current time (input)

C KSTEP (INTEGER) - Current iteration/time step number (input)

C RCONST (REAL) - User constants (input)

C ICONST (INTEGER) - User constants (input)

C

C **

C

DIMENSION FLUX(*), TEMPS(*)

DIMENSION XS(*), YS(*), ZS(*)

DIMENSION RCONST(*), ICONST(*)

C

C **

C

C USER SUPPLIED FORTRAN CODE TO EVALUATE THE HEAT FLUX VECTOR, FLUX

C

C THIS ROUTINE DESCRIBES THE MOTION OF A SURFACE FLUX THAT HAS A

C UNIFORM CIRCULAR DISTRIBUTION (RADIUS=RFLUX) ABOUT A CENTER POINT.

C THE CENTER OF THE FLUX DISTRIBUTION MOVES IN A CIRCULAR PATH WITH

C VELOCITY V=RCENTR*OMEGA. THE FLUX IS NONZERO FOR 0 < TIME < ENDTIM

C

Figure 5.11: User subroutine for COYOTE simulation of surface heated plate.

chapter 5.tex Revision : 1.1

98 CHAPTER 5. EXAMPLE PROBLEMS

C SET PARAMETERS FROM INPUT

C

RCENTR = RCONST(1)

OMEGA = RCONST(2)

RFLUX = RCONST(3)

ENDTIM = RCONST(4)

FLUXVAL = RCONST(5)

C

C CHECK TIME FOR ACTIVE FLUX

C

IF (TIME .LE. ENDTIM) THEN

C

C COMPUTE LOCATION OF CENTER OF HEAT SOURCE

C

XC = RCENTR*COS(OMEGA*TIME)

ZC = RCENTR*SIN(OMEGA*TIME)

C

C EVALUATE FLUX AT ELEMENT SURFACE NODES

C

DO 10 I = 1,NNODES

RAD = SQRT((XS(I) - XC)**2 + (ZS(I) - ZC)**2)

IF(RAD .LE. RFLUX) THEN

FLUX(I) = FLUXVAL

ELSE

FLUX(I) = 0.0

END IF

10 CONTINUE

C

C FLUX INACTIVE

C

ELSE

C

DO 20 I =1,NNODES

FLUX(I)=0.0

20 CONTINUE

END IF

C

RETURN

END

Figure 5.11: Continuation of user subroutine for simulation of a surface heated plate.

Revision : 1.1 chapter 5.tex

5.3. PROBLEM 3 - SURFACE HEATING OF A PLATE 99

Figure 5.12: Temperature contours for the surface heated plate problem.

chapter 5.tex Revision : 1.1

100 CHAPTER 5. EXAMPLE PROBLEMS

Revision : 1.1 references.tex

Chapter 6

References

1. D. K. Gartling, “NACHOS II - A Finite Element Computer Program for Incom-
pressible Flow Problems, Part I - Theoretical Background,” SAND86-1816, Sandia
National Laboratories, Albuquerque, NM (1986)

2. D. K. Gartling and C. E. Hickox, “MARIAH - A Finite Element Computer Pro-
gram for Incompressible Porous Flow Problems,” SAND79-1622, Sandia National
Laboratories, Albuquerque, NM (1979)

3. D. K. Gartling and R. E. Hogan, “COYOTE II - A Finite Element Computer Pro-
gram for Nonlinear Heat Conduction Problems, Part I - Theoretical Background,”
SAND94-1173, Sandia National Laboratories, Albuquerque, NM (1994)

4. D. K. Gartling and M. B. Sirman, “COYOTE II - A Finite Element Computer
Program for Nonlinear Heat Conduction Problems, Part III - Example Problems,”
SAND94-1180, Sandia National Laboratories, Albuquerque, NM (1994)

5. L. A. Schoof and V. R. Yarberry, “EXODUS II - A Finite Element Data Model,”
SAND92-2137, Sandia National Laboratories, Albuquerque, NM (1994)

6. M. W. Glass, “CHAPARRAL - A Library Package for Solving Large Enclosure Ra-
diation Heat Transfer Problems,” (in preparation), Sandia National Laboratories,
Albuquerque, NM (1994)

7. A. B. Shapiro, “FACET - A Radiation View Factor Computer Code for Axisym-
metric, 2D Planar, and 3D Geometries with Shadowing,” UCID-19887, Lawrence
Livermore Laboratory, Livermore, CA (1983)

8. P. R. Schunk and J. N. Shadid, “Iterative Solvers in Implicit Finite Element Codes,”
SAND92-1158, Sandia National Laboratories, Albuquerque, NM (1992)

references.tex 101 Revision : 1.1

102 CHAPTER 6. REFERENCES

9. T. R. Young, “CHEMEQ - A Subroutine for Solving Stiff Ordinary Differential
Equations,” NRL Memorandum Report 4091, Naval Research Laboratory, Wash-
ington, DC (1980)

10. J. R. Red-Horse, W. C. Mills-Curran, and D. P. Flanagan, “SUPES Version 2.1 -
A Software Utilities Package for the Engineering Sciences,” SAND90-0247, Sandia
National Laboratories, Albuquerque, NM (1990)

11. “NetCDF User’s Guide; An Interface for Data Access,” Version 1.11, Unidata Pro-
gram Center (1991)

12. Y. Saad, “SPARSKIT: A Basic Tool for Sparse Matrix Computations,” Tech. Re-
port, Research Institute for Advanced Computer Science, NASA Ames, Moffitt
Field, CA (1990)

13. G. D. Sjaardema, “Overview of the Sandia National Laboratories Engineering Anal-
ysis Code Access System,” SAND92-2292, Sandia National Laboratories, Albu-
querque, NM (1993)

14. T. D. Blacker, “FASTQ Users Manual, Version 1.2,” SAND88-1326, Sandia Na-
tional Laboratories, Albuquerque, NM (1988)

15. G. D. Sjaardema, “GEN3D: A GENESIS Database 2D to 3D Transformation Pro-
gram,” SAND89-0485, Sandia National Laboratories, Albuquerque, NM (1989)

16. A. P. Gilkey and J. H. Glick, “BLOT - A Mesh and Curve Plot Program for the
Output of a Finite Element Analysis,” SAND88-1432, Sandia National Laborato-
ries, Albuquerque, NM (1989)

17. I. M. Levi, “User’s Guide to the Transient Heat Conduction Finite Element Code
HTCON,” MM70-5424-17, Bell Telephone Laboratories Memorandum, Whippany,
NJ (1970)

18. A. F. Emery, K. Sugihara and A. T. Jones, “A Comparison of Some of the Thermal
Characteristics of Finite-Element and Finite-Difference Calculations of Transient
Problems,” Num. Heat Trans., 2, 97-113 (1979)

19. F. Damjanic and D. R. J. Owen, “Practical Considerations for Thermal Transient
Finite Element Analysis Using Isoparametric Elements,” Nucl. Engrg. Des., 69,
109-126 (1982)

20. E. Rank, C. Katz and H. Werner, “On the Importance of the Discrete Maximum
Principle in Transient Analysis Using Finite Element Methods,” Int. J. Num.
Meth. Engng., 19, 1771-1782 (1983)

21. H. S. Carslaw and J. C. Jaeger, “Conduction of Heat in Solids,” Clarendon Press,
Oxford, 2nd Edition (1959)

Revision : 1.1 references.tex

Chapter 7

Appendices

references.tex 103 Revision : 1.1

104 CHAPTER 7. APPENDICES

Revision : 1.1 appendix a.tex

APPENDIX A - SUMMARY OF INPUT COMMANDS 105

Appendix A - Summary of Input Commands

In this section all of the data blocks and associated data cards recognized by COYOTE

are summarized. No attempt is made to define the parameters on each input line since

these descriptions are available in the main text.

Title Data Block :

TITle
THIS IS AN EXAMPLE OF A PROBLEM TITLE

.

.
THESE ARE EXAMPLES OF SUBTITLE LINES
UP TO 10 LINES OF PROBLEM DESCRIPTION MAY
BE INCLUDED ON THESE CARDS

.

.

.
ENDtitle

Material Data Block :

MATerial, material name, material model 2

.

.
DENsity=ρ
DENsity=USER
DENsity=VFUNction, idvar

.

.
SPECific HEAT=Cp

SPECific HEAT=USER
SPECific HEAT=VFUNction, idvar

.

.
CONDuctivity=k11, k22, k33 2

CONDuctivity=USER 2

CONDuctivity=VFUNction, idvar1, idvar2, idvar3 2

.

.
TENsor ROTation=xx̂, yx̂, zx̂, xŷ, yŷ, zŷ
TENsor ROTation=USER

.

.

appendix a.tex Revision : 1.1

106 CHAPTER 7. APPENDICES

LATent HEAT=L
.
.

SOLidus TEMPerature=Tsol
.
.

LIQuidus TEMPerature=Tliq
.
.

ENTHalpy=USER
ENTHalpy=VFUNction, idvar

.

.
PHASe CHANge=property, derivative method

.

.
EMISsivity=ε
EMISsivity=USER
EMISsivity=VFUNction, idvar

.

.
VOLume HEATing=Q
VOLume HEATing=USER
VOLume HEATing=TFUNction, idtim
VOLume HEATing=VFUNction, idvar

.

.
INITial TEMPerature=Tinit

.

.
REACtive MIXture=nspecies, nreactions, USER

.

.
SPECies=name1, name2, . . . , namenspecies

.

.
SPECies PHASe=phase1, phase2, . . . , phasenspecies

.

.
FRACtion CONDensed= frac

.

.
INITial CONcentration=N0

1 , N0
2 , . . . , N0

nspecies

.

Revision : 1.1 appendix a.tex

APPENDIX A - SUMMARY OF INPUT COMMANDS 107

.
MINimum CONcentration=Nmin

1 , Nmin
2 , . . . , Nmin

nspecies

.

.
STERic COEFficients=β1, β2, . . . , βnreaction

.

.
PREexponential FACTor=A1, A2, . . . , Anreaction

.

.
LPREexponential FACTor=lnA1, lnA2, . . . , ln Anreaction

.

.
ACTivation ENERgy=E1, E2, . . . , Enreaction

.

.
ENERgy RELease=q1, q2, . . . , qnreaction

.

.
CONcentration EXPonents, species no.= µi1, µi2, . . . , µi,nreaction

.

.
STOichiometric COEFficients, species no.= νi1, νi2, . . . , νi,nreaction

.

.
CHEMistry ACTivation TEMPerature=Tchem

.

.
ENDmaterial 2

Problem Definition Data Block :

PROBlem DEFinition, format 2

.

.
GEOMetry=type 2

.

.
ELEMent BLOCk= block id, material name, integration rule 2

.

.
BCtype=bcname, nodeset id, bc specification, mfactor

.

.
BCtype=bcname, sideset id, bc specification, mfactor

appendix a.tex Revision : 1.1

108 CHAPTER 7. APPENDICES

BCtype=bcname, sideset id, COEFficient = coef specification, mfactor,
TREFerence = ref specification, mfactor

.

.
BCtype=bcname, SURFace=sideset id1, SURFace= sideset id2,

COEFficient = coef specification
BCtype=bcname, BLOCk=block id1, SURFace=sideset id1,

COEFficient = coef specification
BCtype=bcname, BLOCk=block id1, BLOCk=block id2,

COEFficient = coef specification
.
.

BCtype=bcname, sideset id, enclosure no.
.
.

ENClosure=enclosure no., enclosure type, blocking option,
smoothing option, row-sum tolerance, Area∞, T∞, ε∞

.

.
VIEWfactor IO=type, filename, format

.

.
VIEWfactor COMPutation=method, storage format, resolution, print option

.

.
VIEWfactor GRID=enclosure no., max surface intervals, no. rotational divisions,
no. x-grid divisions, no. y-grid divisions, no. z-grid divisions, min seperation distance,

clipping plane scale factor, no. of threads
.
.

VELocity=type, block id, velocity specification
.
.

EXTernal NODal FIELd=name1, name2, ... , namen
EXTernal ELEMent FIELd=name1, name2, ... , namen

.

.
PRINted OUTput=type

.

.
OUTput LOCations=e1, e2, e3, ... , en TO em, ...

.

.
SPECial OUTput=number of points, x1, y1, z1, x2, y2, z2

Revision : 1.1 appendix a.tex

APPENDIX A - SUMMARY OF INPUT COMMANDS 109

.

.
HEAT FLUX=sideset id1,sideset id2, ... sideset idn

.

.
HEAT FUNCtion=H0

.

.
DEAth, block id, level, variable, mode

.

.
DELete MATerial, block id, variable, value

.

.
ADD MATerial, block id, variable, value

.

.
SIGma=value

.

.
GAS CONstant=value

.

.
ENDproblem 2

Solution Data Block :

SOLution, solution block number, time dependence 2

.

.
REStart TIME=trestart

.

.
REStart STEP=step number

.

.
ITERative METHod=scheme

.

.
INTegration METHod=scheme, predictor option

.

.
CAPacitance MATRix=type

.

.

appendix a.tex Revision : 1.1

110 CHAPTER 7. APPENDICES

TIME STEP OPTion=type
.
.

INTegration TOLerance=integ tol
.
.

NORM TEMPerature=Tnorm
.
.

TIME STEP FACTor=βexplicit
.
.

TIME STEP=∆t 2

.

.
INITial TIME=tinit

.

.
FINal TIME=tfinal 2

.

.
NUMber TIME STEPs=nstep 2

.

.
ABSolute TEMPerature LIMit=Tlim

.

.
MINimum TIME STEP=∆tmin

.

.
MAXimum TIME STEP=∆tmax

.

.
MAXimum TEMPerature STEP=∆Tmax

.

.
CHEMistry STEP MULTiplier=Xchem

.

.
CONVergence TOLerance=tol

.

.
RELaxation FACTor=α

.

Revision : 1.1 appendix a.tex

APPENDIX A - SUMMARY OF INPUT COMMANDS 111

.
MAXimum ITERations=itermax

.

.
PRINted OUTput=option, frequency

.

.
RADiation SOLution=method, tolerance, itermax, relax factor

.

.
VIEWfactor UPDate=option, frequency

.

.
MATRix SOLver=method, krylov subspace

.

.
PREConditioner TYPE=option, polynomial order

.

.
L2 NORM=L2

.

.
RESidual NORM=resid

.

.
MAXimum MATRix ITERations=matrix iter

.

.
EPSilon MINimum=εmin

.

.
EPSilon MAXimum=εmax

.

.
MINimum CHEMistry TIMEstep=∆tchemmin

.

.
PERcentage ASYMptotics=pctasymp

.

.
TOLerance ASYMptotics=tolasymp

.

.
ENDsolution 2

appendix a.tex Revision : 1.1

112 CHAPTER 7. APPENDICES

Post-processing Data Block :

POST
.
.

NODal DATA=name1, name2,....
.
.

ELEMent DATA=name1, name2,....
.
.

CHEMistry DATA=name1, name2,....
.
.

GLOBal DATA=name1, name2,....
.
.

OUTput FREQuency=nsteps
.
.

OUTput TIMEs= t1, t2, . . . tn
.
.

OUTput TIME STEP= ∆tout
.
.

ENDpost

Time Function Data Block :

TIME FUNction=function id
t1, f(t1)
t2, f(t2)
t3, f(t3)

.

.

.
tn, f(tn)

.

.
ENDtime

Variable Function Data Block :

VARiable FUNction=function id
T1, f(T1)

Revision : 1.1 appendix a.tex

APPENDIX A - SUMMARY OF INPUT COMMANDS 113

T2, f(T2)
T3, f(T3)

.

.

.
Tn, f(Tn)

.

.
ENDvariable

User Constants Data Block :

USER CONstants
.
.

USER REAL=n, rvalue
.
.
.

USER INTeger=m, ivalue
.
.

ENDconstant

Termination Data :

EXIT or STOP

appendix a.tex Revision : 1.1

114 CHAPTER 7. APPENDICES

Revision : 1.1 appendix b.tex

APPENDIX B - CONSISTENT UNITS 115

Appendix B - Consistent Units

The following list provides examples of consistent units for quantities that may be en-

countered in the use of COYOTE.

Quantity English Metric S I

Length foot (ft) centimeter (cm) meter (m)

Time second (s) second (s) second (s)

Mass lbm gram (gm) kilogram (kg)

Force lbm-ft/s2 gm-cm/s2 Newton (N)

Energy Btu erg joules (J)

Temperature Fahrenheit (F) Centigrade (C) Centigrade (C)

or Rankine (R) or Kelvin (K) or Kelvin (K)

Velocity ft/s cm/s m/s

Density lbm/ft3 gm/cm3 kg/m3

Specific Heat Btu/lbm-F erg/gm-C J/kg-K

Power Btu/s erg/s J/s (Watt)

Heat Flux Btu/ft2-s erg/cm2-s J/m2-s

Heat Transfer Btu/ft2-s-F erg/cm2-s-C J/m2-s-K

Coefficient

Thermal Conductivity Btu/ft-s-F erg/cm-s-C J/m-s-K

Volumetric Heat Btu/ft3-s erg/cm3-s J/m3-s

Source (Distributed)

Heat Source (Point) Btu/s erg/s J/s

Emissivity - - -

Chemical species - - -

Pre-exponential∗ 1/s 1/s 1/s

Activation energy ft-lbf/lb-mol erg/mol J/mol

Stefan-Boltzmann 4.761 × 10−13 5.669 × 10−5 5.669 × 10−8

Constant, σ Btu/s-ft2-R4 erg/s-cm2-K4 J/s-m2-K4

Gas Constant, R 1.544 × 103 8.3143 × 107 8.3143

ft-lbf/lb-mol-R erg/K-mol J/K-mol

∗ The units for the pre-exponential will change with the use of a steric factor.

appendix b.tex Revision : 1.1

116 CHAPTER 7. APPENDICES

Revision : 1.1 appendix c.tex

APPENDIX C - INITIAL TIME STEP ESTIMATION 117

Appendix C - Initial Time Step Estimation

The analysis of a transient diffusion problem requires the selection of a suitable time

step for the integration procedure. This process can be automated with the time step

being adaptively selected to preserve a specified time truncation error. The AUTOstep

option provides this capability in COYOTE (see Section 3.5). However, the time step

selection process is not self-starting and some initial estimate of an appropriate time step

is still required. In the following the discussion is primarily limited to implicit integration

methods, since these techniques are usually the methods of choice for most conduction

models.

The selection of too large an initial time step can result in the loss of temporal

accuracy in the solution and produce a nonphysical oscillatory response. Likewise, an

inappropriately small initial time step may produce nonphysical, spatial oscillations in

the early time temperature field due to the limited resolution ability (of temperature

gradients) of the finite element mesh. Either of these difficulties may lead to stability

problems if the boundary value problem is nonlinear. In any event, the solution during the

oscillatory period is not accurate and these occurrences are to be avoided. A method for

estimating an appropriate initial time step is outlined below. This procedure is originally

due to Levi [17] though it has been discussed by several other authors [18–20].

In the following development, it is assumed that a finite element mesh has been

constructed that will adequately model the thermal phenomena of interest (e.g., thermal

shock problems will require a fine mesh near a boundary while slower thermal transients

will be less demanding on mesh refinement). For a given spatial discretization, a local

characteristic length, ∆x, is chosen based on element size. Typically, this characteristic

length is measured normal to a boundary on which a temperature or heat flux (source)

disturbance occurs. Based on the characteristic length, the local heat transfer coefficient,

h, and the local thermal conductivity, k, a local element Biot number (Bi = h∆x/k) can

be computed. Note that for a prescribed temperature, heat flux or heat source boundary

condition, the heat transfer coefficient, h, is assumed to be large leading to a large Biot

number.

In order to bound the thermal gradient that will occur at the boundary in the first

time step, the ratio of the temperature at a distance ∆x (characteristic length) from

the boundary to the temperature on the boundary is selected. Let this ratio be defined

by Θ = T (∆x)/Tsurface. Typical values of Θ will range from 0.10 to 0.25. With the

estimated values for local Biot number and temperature ratio Θ, a local Fourier number

(Fo = α∆t/∆x2) may be found from the charts in Figures 7.1 and 7.2. These graphs are

based on an analytic solution for one-dimensional conduction with a convective boundary

appendix c.tex Revision : 1.1

118 CHAPTER 7. APPENDICES

condition [21]. A value of the local Fourier number and values for the characteristic length

and thermal diffusivity, α, then allow a time step to be computed.

As an example of the procedure outlined above, consider the transient problem de-

scribed in Section 5.1. The pertinent material properties (aluminum) were given as ρ =

0.0978 lbm/in3, C = 0.208 Btu/lbm−F, k = 0.002778 Btu/in−s−F and α = 0.1365 in2/s.

The characteristic length is based on the average size of the elements along the radiator

fin (see Figure5.2) and is equal to ∆x = 0.125 in. Since the boundary condition is a

specified heat flux, the Biot number is assumed large (infinite). Using a temperature

ratio of Θ = 0.10, then Figure 7.1 yields a Fourier number of Fo ∼ 0.20. Thus,

∆t =
(Fo)(∆x2)

(α)
=

(0.20)(0.1252)

(0.1365)
= 0.023 seconds.

In the analysis of Example 1, the initial time step was set a factor of two higher than

this estimate since the very early time response was not of interest.

The above procedure can also be used to estimate the overall response time for a

region. In this case the length scale is a characteristic length for the entire region and

the temperature ratio should be order unity. The Fourier number will then produce the

approximate time interval required to reach equilibrium.

Revision : 1.1 appendix c.tex

APPENDIX C - INITIAL TIME STEP ESTIMATION 119

Figure 7.1: Temperature ratio versus Fourier number for smaller Biot numbers.

appendix c.tex Revision : 1.1

120 CHAPTER 7. APPENDICES

Figure 7.2: Temperature ratio versus Fourier number for larger Biot numbers.

Revision : 1.1 appendix c.tex

APPENDIX D - COMMON BLOCK AND ARRAY STORAGE 121

Appendix D - Common Block and Array Storage

The labeled common blocks and major arrays used in COYOTE are defined in the fol-

lowing two sections. In most cases, sizing and dimensioning parameters, option flags,

pointers and problem invariant data (e.g., quadrature rules) are stored in named com-

mon blocks. The common block name should give some indication of the function of

the data within the block. The large data arrays used by COYOTE are allocated by

the dynamic memory manager within the main program and are contained within two

vectors labeled A and CA; the CA vector is for character data. Integer pointers partition

A and CA into specific arrays that are passed through subroutine parameter lists to other

parts of the code. When these arrays are used within the various subroutines they have

a descriptive name that is cataloged in a subsequent section. Comment lines within the

source code also help to define the use of various arrays and vectors.

Common Blocks

The common blocks used in COYOTE are grouped below according to function.

File Data

COMMON /TAPES/ NIN,NOUT,NTP0,NTP1,NTP2,NTP3,NTP4,NTP5

COMMON /NTPDAT/ IFILES(8)

COMMON /FILDAT/ INFILE

Variable Description

NIN,NOUT,NTP0.. Disk file names and ids

IFILES Disk status for each file, 1=open, 0=closed

INFILE Type of mesh input file, 1=EXODUS, 2=Other

Header Data

COMMON /HEADER/ PRBHED,MSHHED,CMMNT(10)

COMMON /RUNDAT/ CODNAM,VERSN,RDATE,RTIME,HRDWRE,SFTWRE,VERSNX

appendix d.tex Revision : 1.1

122 CHAPTER 7. APPENDICES

Variable Description

PRBHED Input title (CHARACTER*80)

MSHHED Input title from mesh file (CHARACTER*80)

CMMNT Input comment lines (CHARACTER*80)

CODNAM Code name (CHARACTER*8)

VERSN Code version number (CHARACTER*8)

RDATE Run date (CHARACTER*8)

RTIME Run time (CHARACTER*8)

HRDWRE Computer hardware (CHARACTER*8)

SFTWRE Computer operating system (CHARACTER*8)

VERSNX Version number of EXODUS II used in COYOTE

Problem Data

COMMON /PRBDAT/ IGEOM,ITMDEP,IRAD,IEXTFL,IREACT,IADAPT,IFLUX,

IPOST

Variable Description

IGEOM Problem geometry flag, 1=2D, 2=axisymmetric, 3=3D

ITMDEP Time dependence flag, 0=steady, 1=transient

IRAD Enclosure radiation flag, 0=omitted, 1=included

IEXTFL External variable file flag, 0=omitted, 1=included

IREACT Reaction kinetics flag, 0=omitted, 1=included

IADAPT Adaptive mesh flag, 0=omitted, 1=included

IFLUX Flux computation flag, 0=omitted, 1=included

IPOST Post-processing file flag, 0=omitted, 1=included

Sizing Data

COMMON /MATDAT/ NUMMAT

COMMON /MSHDAT/ NUMDIM,NUMEL,NUMNOD,NUMVAR,NUMDOF

COMMON /SZDAT/ MXELBK,MXNDEL,MXATEL

COMMON /BLKDAT/ NUMBLK

Revision : 1.1 appendix d.tex

APPENDIX D - COMMON BLOCK AND ARRAY STORAGE 123

COMMON /SLNDAT/ NUMSLN

COMMON /CHMDAT/ MXSPEC,MXREAC,MXCHPT,NUMREL,NUMRMT,NUMSPC,IGASF

Variable Description

NUMMAT Number of materials

NUMDIM Number of coordinate dimensions

NUMEL Number of elements

NUMNOD Number of nodal points

NUMVAR Number of variables per node

NUMDOF Number of degrees of freedom (total)

MXELBK Maximum number of elements per element block

MXNDEL Maximum number of nodes per element

MXATEL Maximum number of element attributes per element

NUMBLK Number of element blocks

NUMSLN Number of solution blocks

MXSPEC Maximum number of chemical species in any material

MXREAC Maximum number of chemical reactions in any material

MXCHPT Maximum number of chemistry points in any element

NUMREL Number of reactive elements

NUMRMT Number of reactive materials

NUMSPC Number of species

IGASF Gas fraction computation flag, 0=omitted, 1=included

Boundary Condition Data

COMMON /BCDAT/ NUMNS,LNSNL,LNSDF,NUMSS,LSSEL,LSSDF,NUMNBC,NUMSBC,

* MXNSNL,MXNSDF,MXSSEL,MXSSDF

Variable Description

NUMNS Number of nodal point sets

LNSNL Length of concatenated node set node list

LNSDF Length of concatenated node set distribution factor list

NUMSS Number of element side sets

LSSEL Length of concatenated side set element list

LSSDF Length of concatenated side set distribution factor list

appendix d.tex Revision : 1.1

124 CHAPTER 7. APPENDICES

NUMNBC Number of node boundary conditions

NUMSBC Number of side boundary conditions

MXNSNL Maximum number of nodes in any node set list

MXNSDF Maximum number of distribution factors in any node set list

MXSSEL Maximum number of elements in any side set list

MXSSDF Maximum number of distribution factors in any side set list

Element Data

COMMON /ELMDAT/ NNELM(20),NNCOR(20),NFACES(20),NNFACE(20,6),

* NCFACE(20,6),NDFACE(20,6,8)

Variable Description

NNELM Number of nodes for each element type

NNCOR Number of corner nodes for each element type

NFACES Number of faces/edges for each element type

NNFACE Number of nodes on each face/edge for each element type

NCFACE Number of corner nodes on each face/edge for each element type

NDFACE Local node numbers on each face/edge for each element type

Function and Constant Data

COMMON /FNCDAT/ NTIMF,MXPTTF,NPTSTF,NVARF,MXPTVF,NPTSVF

COMMON /USRDAT/ NUSRR,NUSRI

Variable Description

NTIMF Number of time functions

MXPTTF Maximum number of points in any time function

NPTSTF Number of time function points

NVARF Number of variable functions

MXPTVF Maximum number of points in any variable function

NPTSVF Number of variable function points

NUSRR Number of user defined (real) constants

Revision : 1.1 appendix d.tex

APPENDIX D - COMMON BLOCK AND ARRAY STORAGE 125

NUSRI Number of user defined (integer) constants

Special Point Data

COMMON /SPTDAT/ ISPT,NSPT,NELSPT(50),PTS(50,3),SPTVAL(50),

* SPTXYZ(50,3)

COMMON /TOLDAT/ TOL,EPS,STRLMT,ITERMX

COMMON /FLXDAT/ NUMFLX,IDFLUX(20)

Variable Description

ISPT Special output points flag, 0=omitted, 1=included

NSPT Number of special points, maximum 50

NELSPT Number of the element containing each special point

PTS Local element coordinates (s, t, r) for each special point

SPTVAL Current value of dependent variable at each special point

SPTXYZ Global coordinates (x, y, z) for each special point

TOL Spatial tolerance for locating special points within an

element

EPS Spatial tolerance for locating special points coincident with

a node

STRLMT Tolerance for normalized element coordinates

ITERMX Maximum Newton iterations for convergence of special point

coordinates

NUMFLX Number of side sets for integrated flux computations

IDFLUX Side set ids for integrated flux computations

Radiation Enclosure Data

COMMON /ENCDAT/ NUMENC,MXSRF,NUMSRF,MXNDE,NUMNDE

COMMON /VFDAT/ IVFMTH,IVFCMP,IVFRES,IVFRD,IVFWRT,IVFFMT,IVFOUT,

* NAMVFR,NAMVFW

Variable Description

appendix d.tex Revision : 1.1

126 CHAPTER 7. APPENDICES

NUMENC Number of radiation enclosures

MXSRF Maximum number of surfaces in any enclosure

NUMSRF Sum of the number of surfaces in all enclosures

MXNDE Maximum length of vector containing uncompressed

list of nodes for all enclosures

NUMNDE Sum of the number of nodes in all enclosures

IVFMTH View factor computation method, 1=FACET, 2=Hemicube

IVFCMP View factor storage and compression, 0=no storage,

1=no compression, 2=word run length encoding,

3=byte run length encoding, 4=LZW encoding

IVFRES Resolution for hemicube algorithm

IVFRD Read view factor flag, 0=no read, 1=read

IVFWRT Write view factor flag, 0=no write, 1=write

IVFFMT Write view factor format, 0=ASCII, 1=native machine binary

2=XDR, 3=NetCDF

IVFOUT Print option for FACET, 0=no print, 1=summary, 2=debug

NAMVFR Name of view factor file, read option (CHARACTER*20)

NAMVFW Name of view factor file, write option (CHARACTER*20)

Input/Output Data

COMMON /IODAT/ IEDIT,IPRNTD,IPRNTS,NPRNTS

Variable Description

IEDIT Solution output editing flag, 0=print all elements, 1=print

selected elements

IPRNTD Print level for input data, 1=summary, 2=extended, 3=debug

IPRNTS Print level for solution data, 0=none, 1=summary, 2=extended,

3=debug

NPRNTS Print frequency for solution data

Solution Algorithm Data

COMMON /ALGDAT/ IALGOR,IAUTO,ILUMP,IPRDCT,IFXDPT

Revision : 1.1 appendix d.tex

APPENDIX D - COMMON BLOCK AND ARRAY STORAGE 127

COMMON /ITRDAT/ INEWT,IDELTA

COMMON /RSTDAT/ IRSTRT,NSTEPS,RDTIME

COMMON /PCGDAT/ NUMCHT,NUMTER,NUMQER,NNZERO

COMMON /STFSOL/ EPSMIN,EPSMAX,DTMIN,PAYSI,TCRASY

Variable Description

IALGOR Solution algorithm flag, steady - 1=Picard, 2=Newton,

transient - 1=Euler, 2=trapezoid, 3=explicit

IAUTO Automatic time step selection flag, 1=omitted, 2=included

ILUMP Lumped capacitance matrix flag, 1=omitted, 2=included

IPRDCT Explicit predictor flag, 1=omitted, 2=included

IFXDPT Iterative method flag, 1=Picard, 2=Newton

INEWT Newton iteration flag, 0=omitted, 1=included

IDELTA Newton formulation approach, 0=T&Q, 1=dT&dQ

IRSTRT Restart flag, 0=new solution, 1=restart from old solution

NSTEPS Time step number at which to restart

RDTIME Time at which to restart

NUMCHT Number of coefficients in heat conduction equations

(for Newton’s method, includes the coefficients for

radiative fluxes in the heat conduction equations)

NUMTER Number of coefficients of nodal temperatures in the

enclosure radiation equations

NUMQER Number of coefficients of radiative fluxes in the

enclosure radiation equations

NNZERO Number of nonzero entries in global matrix

EPSMIN Convergence tolerance for stiff solver CHEMEQ

EPSMAX Convergence tolerance for stiff solver CHEMEQ

DTMIN Minimum time step allowed for stiff solver CHEMEQ

PAYSI Percentage of equations treated by asymptotic method

TCRASY Tolerance for asymptotic algorithm

External Variable Data

COMMON /EXTDAT/ NUMXNV,NUMXEV,IXVEL,IXDSPL,IXVOLH,IXMAG,IXSTAT

COMMON /EXTNAM/ NAMXNV(10),NAMXEV(10)

Variable Description

appendix d.tex Revision : 1.1

128 CHAPTER 7. APPENDICES

NUMXNV Number of external nodal variables

NUMXEV Number of external element variables

IXVEL External velocity variable flag, 0=omitted, 1=included

IXDSPL External displacement variable flag, 0=omitted, 1=included

IXVOLH External volume heating variable flag, 0=omitted, 1=included

IXMAG External magnetic variable flag, 0=omitted, 1=included

IXSTAT External element status flag, 0=omitted, 1=included

NAMXNV Names of external nodal variables (CHARACTER*8)

NAMXEV Names of external element variables (CHARACTER*8)

Mesh Modification and Movement

COMMON /MODDAT/ IMDMSH,IADDBK,IDELBK,IKILL

COMMON /MOVDAT/ IMVMSH,ILAGRN,IEULRN

Variable Description

IMDMSH Mesh modification flag, 0=omitted, 1=included

IADDBK Material addition flag, 0=omitted, 1=included

IDELBK Material deletion flag, 0=omitted, 1=included

IKILL Element death flag, 0=omitted, 1=included

IMVMSH Mesh movement flag, 0=omitted, 1=included

ILAGRN Lagrangian velocity flag, 0=omitted, 1=included

IEULRN Eulerian velocity flag, 0=omitted, 1=included

Norm Data

COMMON /MAXVAR/ TMAX,IFNDMX

COMMON /NORMS/ ANRMT,BNRMT,TDIFF

Variable Description

TMAX Maximum temperature in the current solution vector

IFNDMX Flag for computation/input of norm temperature

Revision : 1.1 appendix d.tex

APPENDIX D - COMMON BLOCK AND ARRAY STORAGE 129

ANRMT Norm on temperature change between iterations/time steps

BNRMT Norm on temperature integration error

TDIFF Maximum temperature change between steps or iterations

Postprocessing Data

COMMON /EXODAT/ NVARNP,NVAREL,NVARGL,NUMEV,NUMCV

COMMON /EXONAM/ NAMECO(3),NAMEEL(20),NAMENV(10),NAMEEV(5),NAMECV(45),

* NAMEGV(25)

COMMON /EXOUT/ IEXOPT,NWFREQ,DELTEX,NTIMEX,TIMEX(50)

Variable Description

NVARNP Number of nodal variables to be written on EXODUS II file

NVAREL Number of element variables to be written on EXODUS II file

NVARGL Number of global variables to be written on EXODUS II file

NUMEV Number of nonchemistry element variables

NUMCV Number of chemistry element variables

NAMECO Names for coordinates (CHARACTER*8)

NAMEEL Names for elements (CHARACTER*8)

NAMENV Names for nodal variables (CHARACTER*8)

NAMEEV Names for nonchemistry element variables (CHARACTER*8)

NAMECV Names for chemistry element variables (CHARACTER*8)

NAMEGV Names for global variables (CHARACTER*8)

IEXOPT EXODUS II output option flag,

1=write output at every NWFREQ steps,

2=write output at every DELTEX time interval,

3=write output at every time specified in TIMEX

NWFREQ Frequency for writing to EXODUS II output file

DELTEX Time step for writing EXODUS II output file

NTIMEX Number of output times stored in TIMEX

TIMEX Specified times for writing EXODUS II output file

Constants

COMMON /CNSTNT/ SMA,GASR

appendix d.tex Revision : 1.1

130 CHAPTER 7. APPENDICES

Variable Description

SIGMA Stefan-Boltzman constant

GASR Gas constant

Shape Function Data (2D)

COMMON /TRI3/ TR3(3,7),TR3G(3,2,7),TR3F(3,3),TR3FG(3,2,3),TR3WT(7)

COMMON /TRI6/ TR6(6,7),TR6G(6,2,7),TR6F(6,3),TR6FG(6,2,3),TR6WT(7)

COMMON /QUAD4/ QD4(4,9),QD4G(4,2,9),QD4F(4,4),QD4FG(4,2,4),QD4WT(9)

COMMON /QUAD8/ QD8(8,9),QD8G(8,2,9),QD8F(8,4),QD8FG(8,2,4),QD8WT(9)

COMMON /EDGE2/ ED2(2,3),ED2G(2,3),ED2WT(3)

COMMON /EDGE3/ ED3(3,3),ED3G(3,3),ED3WT(3)

Variable Description

TR3,TR6 Two-dimensional, triangular and quadrilateral, element shape

QD4,QD8 functions evaluated at the quadrature points. The first index

is the shape function (node) number; the second index is the

quadrature point number.

TR3G,TR6G Two-dimensional, triangular and quadrilateral, element shape

QD4G,QD8G function derivatives evaluated at the quadrature points. The

first index is the shape function (node) number, the second

index is the local spatial direction for the derivative and the

third index is the quadrature point number.

TR3F,TR6F Two-dimensional, triangular and quadrilateral, element shape

QD4F,QD8F functions evaluated at the flux evaluation points. The first

index is the shape function (node) number; the second index

is the flux evaluation point number.

TR3FG,TR6FG Two-dimensional, triangular and quadrilateral, element shape

QD4FG,QD8FG function derivatives evaluated at the flux evaluation points.

The first index is the shape function (node) number, the second

index is the local spatial direction for the derivative and the

third index is the flux evaluation point number.

TR3WT,TR6WT Quadrature weights for each element at each integration point.

QD4WT,QD8WT

ED2,ED3 One-dimensional, element edge shape functions evaluated at the

quadrature points. The first index is the shape function (node)

Revision : 1.1 appendix d.tex

APPENDIX D - COMMON BLOCK AND ARRAY STORAGE 131

number; the second index is the quadrature point number.

ED2G,ED3G One-dimensional, element edge shape function derivatives

evaluated at the quadrature points. The first index is the shape

function (node) number and the second index is the quadrature

point number.

ED2WT,ED3WT Quadrature weights for each element edge at each integration

point.

Shape Function Data (3D)

COMMON /TETR4/ TT4(4,5),TT4G(4,3,5),TT4F(4,4),TT4FG(4,3,4),TT4WT(5)

COMMON /TETR10/ TT10(10,5),TT10G(10,3,5),TT10F(10,4),TT10FG(10,3,4),

* TT10WT(5)

COMMON /WEDG6/ WD6(6,21),WD6G(6,3,21),WD6F(6,6),WD6FG(6,3,6),WD6WT(21)

COMMON /WEDG15/ WD15(15,21),WD15G(15,3,21),WD15F(15,6),WD15FG(15,3,6),

* WD15WT(21)

COMMON /HEX8/ HX8(8,27),HX8G(8,3,27),HX8F(8,8),HX8FG(8,3,8),HX8WT(27)

COMMON /HEX20/ HX20(20,27),HX20G(20,3,27),HX20F(20,8),HX20FG(20,3,8),

* HX20WT(27)

COMMON /FACE3/ FC3(3,7),FC3G(3,2,7),FC3WT(7)

COMMON /FACE6/ FC6(6,7),FC6G(6,2,7),FC6WT(7)

COMMON /FACE4/ FC4(4,9),FC4G(4,2,9),FC4WT(9)

COMMON /FACE8/ FC8(8,9),FC8G(8,2,9),FC8WT(9)

Variable Description

TT4,TT10 Three-dimensional, tetrahedral, wedge and hexahedral,

WD6,WD15 element shape functions evaluated at the quadrature points.

HX8,HX20 The first index is the shape function (node) number; the

second index is the quadrature point number.

TT4G,TT10G Three-dimensional, tetrahedral, wedge and hexahedral,

WD6G,WD15G element shape function derivatives evaluated at the

HX8G,HX20G quadrature points. The first index is the shape function

(node) number, the second index is the local spatial direction

for the derivative and the third index is the quadrature

point number.

TT4F,TT10F Three-dimensional, tetrahedral, wedge and hexahedral,

WD6F,WD15F element shape functions evaluated at the flux evaluation points.

appendix d.tex Revision : 1.1

132 CHAPTER 7. APPENDICES

HX8F,HX20F The first index is the shape function (node) number; the

second index is the flux evaluation point number.

TT4FG,TT10FG Three-dimensional, tetrahedral, wedge and hexahedral,

WD6FG,WD15FG element shape function derivatives evaluated at the

HX8FG,HX20FG flux evaluation points. The first index is the shape function

(node) number, the second index is the local spatial direction

for the derivative and the third index is the flux evaluation

point number.

TT4WT,TT10W Quadrature weights for each element at each integration

WD6WT,WD15WT point.

HX8WT,HX20WT

FC3,FC6 Two-dimensional, triangular and quadrilateral element face

FC4,FC8 shape functions evaluated at the quadrature points. The first

index is the shape function (node) number; the second index

is the quadrature point number.

FC3G,FC6G Two-dimensional, triangular and quadrilateral element face

FC4G,FC8G shape function derivatives evaluated at the quadrature points.

The first index is the shape function (node) number, the

second index is the local (surface) spatial direction for the

derivative and the third index is the quadrature point number.

FC3WT,FC6WT Quadrature weights for each element face at each integration

FC4WT,FC8WT point.

Shape Function Data (Specialty Elements)

COMMON /BAR2/ BR2(2,3),BR2G(2,3),BR2F(2,2),BR2FG(2,2),BR2WT(3)

COMMON /BAR3/ BR3(3,3),BR3G(3,3),BR3F(3,2),BR3FG(3,2),BR3WT(3)

COMMON /SHELL3/ SHL3(3,14),SHL3G(3,3,14),RSHL3G(3,3,14),

* SHL3F(3,3),SHL3FG(3,3,3),SHL3WT(14)

COMMON /SHELL6/ SHL6(6,14),SHL6G(6,3,14),RSHL6G(6,3,14),

* SHL6F(6,3),SHL6FG(6,3,3),SHL6WT(14)

COMMON /SHELL4/ SHL4(4,18),SHL4G(4,3,18),RSHL4G(4,3,18),

* SHL4F(4,4), SHL4FG(4,3,4),SHL4WT(18)

COMMON /SHELL8/ SHL8(8,18),SHL8G(8,3,18),RSHL8G(8,3,18),

* SHL8F(8,4),SHL8FG(8,3,4),SHL8WT(18)

Variable Description

Revision : 1.1 appendix d.tex

APPENDIX D - COMMON BLOCK AND ARRAY STORAGE 133

BR2,BR3 Three-dimensional, bar and shell element shape functions

SHL3,SHL6 evaluated at the quadrature points. The first index is the

SHL4,SHL8 shape function (node) number; the second index is the

quadrature point number.

BR2G,BR3G Three-dimensional, bar and shell element shape function

SHL3G,SHL6G derivatives evaluated at the quadrature points. The first

SHL4G,SHL8G index is the shape function (node) number, the second index

is the local spatial direction for the derivative and the

third index is the quadrature point number.

RSHL3G,RSHL6G Three-dimensional, bar and shell product of radius and

RSHL3G,RSHL6G element shape functions evaluated at the quadrature points.

The first index is the shape function (node) number, the

second index is the local spatial direction for the derivative

and the third index is the quadrature point number.

BR2F,BR3F Three-dimensional, bar and shell element shape functions

SHL3F,SHL6F evaluated at the flux evaluation points. The first index

SHL4F,SHL8F is the shape function (node) number; the second index is

the flux evaluation point number.

BR2FG,BR3FG Three-dimensional, bar and shell element shape function

SHL3FG,SHL6FG derivatives evaluated at the flux evaluation points. The first

SHL4FG,SHL8FG index is the shape function (node) number, the second index

is the local spatial direction for the derivative and the

third index is the flux evaluation point number.

BR2WT,BR3WT Quadrature weights for each element at each integration

SHL3WT,SHL6WT point.

SHL4WT,SHL8WT

Quadrature Data

COMMON /INTDAT/ NIRULE(20),NFRULE(20)

COMMON /GAUSS1/ GSPT1(3,1,3),GSWT1(3,3),NGSPT1(3)

COMMON /GAUSS2/ GSPT2(9,2,3),GSWT2(9,3),NGSPT2(3)

COMMON /GAUSS3/ GSPT3(27,3,5),GSWT3(27,5),NGSPT3(5)

COMMON /GAUSS4/ GSPT4(7,3,4),GSWT4(7,4),NGSPT4(4)

COMMON /GAUSS5/ GSPT5(5,4,3),GSWT5(5,3),NGSPT5(3)

COMMON /GAUSS6/ GSPT6(21,4,4),GSWT6(21,4),NGSPT6(4)

COMMON /GAUSS7/ GSPT7(14,4,4),GSWT7(14,4),NGSPT7(4)

COMMON /GAUSS8/ GSPT8(18,3,5),GSWT8(18,5),NGSPT8(5)

appendix d.tex Revision : 1.1

134 CHAPTER 7. APPENDICES

COMMON /CENTER/ STRPT(20,3)

COMMON /TRNSFM/ EXTBR(2,2),EXTTR(3,3),EXTQD(4,4),EXTTT(4,4),

* EXTWD(6,6),EXTHX(8,8),EXTSHT(3,3),EXTSHQ(4,4)

Variable Description

NIRULE Integer indicating integration rule for each element type

NFRULE Integer indicating flux computation rule for each element type

GSPTn Quadrature points for each quadrature rule and each element

type. The first index is the number of the quadrature point,

the second index is the number of the local coordinate direction

and the third index is the integration rule. The integer n in the

array name separates the data according to element geometry.

Arrays with n=1 contain quadrature data for one-dimensional,

line elements, n=2 is for two-dimensional quadrilateral

regions, n=3 is for three-dimensional hexahedrons, n=4 is for

two-dimensional triangular areas, n=5 is for three-dimensional

tetrahedrons, n=6 is for three-dimensional wedges, n=7

is for triangular shells and n=8 is for quadrilateral shells.

GSWTn Quadrature weights for each integration point and each

quadrature rule. The first index specifies the number of the

quadrature point and the second index is the integration rule.

NGSPTn Number of quadrature points for each integration rule.

STRPT Local element coordinates for element centroid.

EXTmmm Flux point to node point linear extrapolation operators for

each element type.

Free Field Input Data

COMMON /INDATR/ RDATA(50)

COMMON /INDATI/ IDATA(50)

COMMON /INDATC/ CDATA(50)

COMMON /INDATK/ KDATA(50)

Variable Description

RDATA Real data from the free field reader

Revision : 1.1 appendix d.tex

APPENDIX D - COMMON BLOCK AND ARRAY STORAGE 135

IDATA Integer data from the free field reader

CDATA Character data from the free field reader (CHARACTER*20)

KDATA Data type flags from the free field reader

Array Storage

The major arrays used in COYOTE are grouped below according to function.

Mesh Data

DIMENSION IDBLK(NUMBLK)

DIMENSION X(NUMNOD), Y(NUMNOD), Z(NUMNOD)

DIMENSION ICON(MXNDEL,NUMEL)

DIMENSION LSTKND(NUMEL), LSTOUT(NUMEL), LSTDEL(NUMEL)

DIMENSION ELATRB(MXATEL,NUMEL)

DIMENSION DATBLK(10,NUMBLK), IPTBLK(20,NUMBLK)

DIMENSION ICONBK(MXNDEL*MXELBK), ATRBBK(MXATEL*MXELBK)

DIMENSION BLKMAT(NUMBLK), BLKVAR(NUMBLK)

Array Description

IDBLK Block id numbers

X, Y, Z Nodal coordinates

ICON Element connectivity

LSTKND Encoded list of element type and material

(1000*mat number + element type)

LSTOUT Output flags for elements, 0=no print, 1=print

LSTDEL Activation flag for elements, 0=inactive, 1=active

ELATRB Element attributes

DATBLK Element block data

DATBLK(1,NUMBLK) - UX velocity for block

DATBLK(2,NUMBLK) - UY velocity for block

DATBLK(3,NUMBLK) - UZ velocity for block

DATBLK(4,NUMBLK) - Variable value for element death

DATBLK(5,NUMBLK) - Time for block deletion

DATBLK(6,NUMBLK) - Time for block addition

appendix d.tex Revision : 1.1

136 CHAPTER 7. APPENDICES

DATBLK(7,NUMBLK) - Unused

DATBLK(8,NUMBLK) - Unused

DATBLK(9,NUMBLK) - Unused

DATBLK(10,NUMBLK) - Unused

IPTBLK Element block pointers and flags

IPTBLK(1,NUMBLK) - Number of elements in block

IPTBLK(2,NUMBLK) - Element type

IPTBLK(3,NUMBLK) - Number of element attributes

LSTBLK(4,NUMBLK) - Number of integration points

IPTBLK(5,NUMBLK) - Material number

IPTBLK(6,NUMBLK) - First element in block

IPTBLK(7,NUMBLK) - Last element in block

IPTBLK(8,NUMBLK) - Element death flag

IPTBLK(9,NUMBLK) - Block deletion flag

IPTBLK(10,NUMBLK) - Block addition flag

IPTBLK(11,NUMBLK) - Element death variable

IPTBLK(12,NUMBLK) - Element death mode

IPTBLK(13,NUMBLK) - Unused

IPTBLK(14,NUMBLK) - Number of flux points

IPTBLK(15,NUMBLK) - External velocity flag

IPTBLK(16,NUMBLK) - Velocity type

IPTBLK(17,NUMBLK) - Velocity user subroutine flag

IPTBLK(18,NUMBLK) - Function id for UX

IPTBLK(19,NUMBLK) - Function id for UY

IPTBLK(20,NUMBLK) - Function id for UZ

ICONBK Element connectivity for a block

ATRBBK Element attributes for a block

BLKMAT Material name for element block (CHARACTER*20)

BLKVAR Variable name for death option (CHARACTER*20)

Boundary Condition Data

DIMENSION IDNS(NUMNS), NNNS(NUMNS), NDFNS(NUMNS)

DIMENSION IPNNS(NUMNS), IPDFNS(NUMNS)

DIMENSION LSNNS(LNSNL), DFNS(LNSDF)

DIMENSION IDSS(NUMSS), NESS(NUMSS), NDFSS(NUMSS)

DIMENSION IPESS(NUMSS), IPDFSS(NUMSS)

DIMENSION LSESS(LSSEL), LSSSS(LSSEL), DFSS(LSSDF)

Revision : 1.1 appendix d.tex

APPENDIX D - COMMON BLOCK AND ARRAY STORAGE 137

DIMENSION DATNS(2,NUMNS), KPTNS(5,NUMNS)

DIMENSION DATSS(6,NUMSS), KPTSS(10,NUMSS), KPTELM(NUMEL)

Array Description

IDNS Node set ids

NNNS Node set node counts

NDFNS Node set distribution factor counts

IPNNS Node set node pointers

IPDFNS Node set distribution factor pointers

LSNNS Node set node list

DFNS Node set distribution factor list

IDSS Side set ids

NESS Side set element counts

NDFSS Side set distribution factor counts

IPESS Side set element pointers

IPDFSS Side set distribution factor pointers

LSESS Side set element list

LSSSS Side set side list

DFSS Side set distribution factor list

DATNS Node set boundary data

DATNS(1,NUMNS) - Value of boundary condition

DATNS(2,NUMNS) - Multiplying factor for boundary value

KPTNS Node set boundary pointers

KPTNS(1,NUMNS) - Node set id

KPTNS(2,NUMNS) - Type of bc, 1= temperature, 2=heat source

KPTNS(3,NUMNS) - User subroutine flag

KPTNS(4,NUMNS) - Function id for bc, +id=variable function,

-id=time function

KPTNS(5,NUMNS) - Constant bc flag

DATSS Side set boundary data

DATSS(1,NUMSS) - Value 1 of boundary condition

DATSS(2,NUMSS) - Value 2 of boundary condition

DATSS(3,NUMSS) - Unused

DATSS(4,NUMSS) - Unused

DATSS(5,NUMSS) - Multiplying factor for value 1

DATESS(6,NUMSS) - Multiplying factor for value 2

KPTSS Side set boundary pointers

KPTSS(1,NUMSS) - Side set id

KPTSS(2,NUMSS) - Type of bc, 1=heat flux, 2=convection,

appendix d.tex Revision : 1.1

138 CHAPTER 7. APPENDICES

3=radiation, 4=enclosure radiation,

5= contact surface

KPTSS(3,NUMSS) - User subroutine flag for value 1

KPTSS(4,NUMSS) - User subroutine flag for value 2

KPTSS(5,NUMSS) - Function id for value 1, +id=variable

function, -id=time function

KPTSS(6,NUMSS) - Function id for value 2, +id=variable

function, -id=time function

KPTSS(7,NUMSS) - Constant bc flag, value 1

KPTSS(8,NUMSS) - Constant bc flag, value 2

KPTSS(9,NUMSS) - Unused

KPTSS(10,NUMSS) - Enclosure number

KPTELM Encoded side set list for each element

Material Data

DIMENSION DATMAT(21,NUMMAT)

DIMENSION PTMAT(21,NUMMAT)

DIMENSION IPTMAT(25,NUMMAT)

DIMENSION MATNAM(NUMMAT)

Array Description

DATMAT Material property values

DATMAT(1,NUMMAT) - Density

DATMAT(2,NUMMAT) - Specific heat

DATMAT(3,NUMMAT) - Conductivity (xx component)

DATMAT(4,NUMMAT) - Conductivity (yy component)

DATMAT(5,NUMMAT) - Conductivity (zz component)

DATMAT(6,NUMMAT) - Volume heating

DATMAT(7,NUMMAT) - Emissivity

DATMAT(8,NUMMAT) - Conductivity tensor orientation (xx̂)

DATMAT(9,NUMMAT) - Conductivity tensor orientation (yx̂)

DATMAT(10,NUMMAT) - Conductivity tensor orientation (zx̂)

DATMAT(11,NUMMAT) - Conductivity tensor orientation (xŷ)

DATMAT(12,NUMMAT) - Conductivity tensor orientation (yŷ)

DATMAT(13,NUMMAT) - Conductivity tensor orientation (zŷ)

DATMAT(14,NUMMAT) - Latent heat

Revision : 1.1 appendix d.tex

APPENDIX D - COMMON BLOCK AND ARRAY STORAGE 139

DATMAT(15,NUMMAT) - Solidus temperature

DATMAT(16,NUMMAT) - Liquidus temperature

DATMAT(17,NUMMAT) - Enthalpy (Unused)

DATMAT(18,NUMMAT) - Unused

DATMAT(19,NUMMAT) - Unused

DATMAT(20,NUMMAT) - Chemistry activation temperature

DATMAT(21,NUMMAT) - Initial temperature

PTMAT Material property pointers (CHARACTER*1)

PTMAT(1,NUMMAT) - Subroutine and function flags for property

’V’=variable function, ’T’=time function

’C’=constant value, ’U’=user subroutine

.

PTMAT(16,NUMMAT) - Subroutine and function flag for property

PTMAT(17,NUMMAT) - Unused

PTMAT(18,NUMMAT) - Unused

PTMAT(19,NUMMAT) - Unused

PTMAT(20,NUMMAT) - Unused

PTMAT(21,NUMMAT) - Material model, ’I’= isotropic,

’O’=orthotropic

IPTMAT Material property function flags

IPTMAT(1,NUMMAT) - Function id for property

.

.

.

IPTMAT(16,NUMMAT) - Function id for property

IPTMAT(17,NUMMAT) - Unused

IPTMAT(18,NUMMAT) - Unused

IPTMAT(19,NUMMAT) - Unused

IPTMAT(20,NUMMAT) - Unused

IPTMAT(21,NUMMAT) - Phase change model, 0=none,

1=specific heat, 2=enthalpy gradient,

3=enthalpy time derivative

IPTMAT(22,NUMMAT) - Reactive material number

IPTMAT(23,NUMMAT) - Number of species

IPTMAT(24,NUMMAT) - Number of reactions

IPTMAT(25,NUMMAT) - Unused

MATNAM Material property names (CHARACTER*20)

appendix d.tex Revision : 1.1

140 CHAPTER 7. APPENDICES

Chemistry Data

DIMENSION IPTREL(NUMEL), IPTRMT(5,NUMMAT)

DIMENSION AMUSP(MXSPEC,MXREAC,NUMRMT), ANUSP(MXSPEC,MXREAC,NUMRMT)

DIMENSION STERIC(MXREAC,NUMRMT), PREX(MXREAC,NUMRMT)

DIMENSION AENRGY(MXREAC,NUMRMT), ENRGYR(MXREAC,NUMRMT)

DIMENSION SPEC0(MXSPEC,NUMRMT), SPECMN(MXSPEC,NUMRMT)

DIMENSION SPCNAM(MXSPEC,NUMRMT)

DIMENSION GSPHSE(MXSPEC,NUMRMT), CNDFRC(NUMRMT)

Array Description

IPTREL List of reactive elements

IPTRMT Reactive material pointers

IPTRMT(1,NUMMAT) - Reactive material number

IPTRMT(2,NUMMAT) - Number of species

IPTRMT(3,NUMMAT) - Number of reactions

IPTRMT(4,NUMMAT) - Unused

IPTRMT(5,NUMMAT) - Unused

AMUSP Concentration exponents for each material

ANUSP Stoichiometric coefficients for each material

STERIC Steric factors for each material

PREX Pre-exponential factors for each material

AENRGY Activation energies for each material

ENRGYR Endo/exothermic energy release for each material

SPEC0 Initial species concentrations for each material

SPECMN Minimum species concentrations for each material

SPCNAM Species names for each material (CHARACTER*20)

GSPHSE Gas phase flag for each species for each material

CNDFRC Condensed fraction for each material

Function and Constant Data

DIMENSION DATTFN(2,NPTSTF), IPTTFN(3,NTIMF), TFNVAL(NTIMF)

DIMENSION DATVFN(2,NPTSVF), IPTVFN(3,NVARF)

DIMENSION RCONST(NUSRR), ICONST(NUSRI)

Revision : 1.1 appendix d.tex

APPENDIX D - COMMON BLOCK AND ARRAY STORAGE 141

Array Description

DATTFN Time function data

DATTFN(1,NPTSTF) - Time

DATTFN(2,NPTSTF) - Function value

IPTTFN Time function pointers

IPTTFN(1,NTIMF) - Function id

IPTTFN(2,NTIMF) - Number of points in time function

IPTTFN(3,NTIMF) - Pointer to first function point in DATTFN

TFNVAL Time function values at each time step

DATVFN Variable function data

DATVFN(1,NPTSVF) - Variable value (temperature)

DATVFN(2,NPTSVF) - Function value

IPTVFN Variable function pointers

IPTVFN(1,NVARF) - Function id

IPTVFN(2,NVARF) - Number of points in time function

IPTVFN(3,NVARF) - Pointer to first function point in DATVFN

RCONST User defined constants (real)

ICONST User defined constants (integer)

Radiation Enclosure Data

DIMENSION DATENC(3,NUMENC), IPTENC(12,NUMENC)

DIMENSION ICONSF(5,MXSRF)

DIMENSION LSTSRF(MXSRF,NUMENC)

DIMENSION QSURF(MXSRF,NUMENC), TSURF(MXSRF,NUMENC), ESURF(MXSRF,NUMENC),

VF(MXSRF)

Array Description

DATENC Enclosure radiation data

DATENC(1,NUMENC) - Area∞, partial enclosure

DATENC(2,NUMENC) - T∞, partial enclosure

DATENC(3,NUMENC) - ε∞, partial enclosure

IPTENC Enclosure radiation pointers

IPTENC(1,NUMENC) - Number of surfaces in enclosure

IPTENC(2,NUMENC) - Partial enclosure flag, 0=full enclosure,

1=partial enclosure

appendix d.tex Revision : 1.1

142 CHAPTER 7. APPENDICES

IPTENC(3,NUMENC) - Blocking surface flag, 0=no blocking surfaces,

1=blocking surfaces

IPTENC(4,NUMENC) - Smoothing flag, 0=no smoothing,

1=least squares smoothing

IPTENC(5,NUMENC) - Maximum surface subdivisions

IPTENC(6,NUMENC) - Number of rotational intervals

IPTENC(7,NUMENC) - Number of x-grid divisions

IPTENC(8,NUMENC) - Number of y-grid divisions

IPTENC(9,NUMENC) - Number of z-grid divisions

IPTENC(10,NUMENC) - Unused

IPTENC(11,NUMENC) - Time function id for T∞ (not implemented)

IPTENC(12,NUMENC) - Variable function id for ε∞ (not implemented)

ICONSF Connectivity for enclosure surfaces

LSTSRF Encoded element and face numbers for enclosure surfaces

QSURF Heat flux for enclosure surfaces

TSURF Temperature for enclosure surfaces

ESURF Emissivity for enclosure surfaces

VF Row of view factors for enclosure surfaces

Solution Control Data

DIMENSION DATSLN(20,NUMSLN)

DIMENSION IPTSLN(20,NUMSLN)

Array Description

DATSLN Solution control data

DATSLN(1,NUMSLN) - Initial solution time

DATSLN(2,NUMSLN) - Final solution time

DATSLN(3,NUMSLN) - Initial time step

DATSLN(4,NUMSLN) - Minimum time step

DATSLN(5,NUMSLN) - Maximum time step

DATSLN(6,NUMSLN) - Maximum temperature change

per time step

DATSLN(7,NUMSLN) - Convergence tolerance on temperature

DATSLN(8,NUMSLN) - Integration tolerance

DATSLN(9,NUMSLN) - Relaxation factor

DATSLN(10,NUMSLN) - Chemistry time step multiplier

Revision : 1.1 appendix d.tex

APPENDIX D - COMMON BLOCK AND ARRAY STORAGE 143

DATSLN(11,NUMSLN) - Convergence tolerance on radiation

DATSLN(12,NUMSLN) - Time increment for view factor reform

DATSLN(13,NUMSLN) - Explicit time step scale factor

DATSLN(14,NUMSLN) - L2 norm for iterative solver

DATSLN(15,NUMSLN) - Residual norm for iterative solver

DATSLN(16,NUMSLN) - Absolute temperature limit

DATSLN(17,NUMSLN) - Temperature for norm

DATSLN(18,NUMSLN) - Unused

DATSLN(19,NUMSLN) - Unused

DATSLN(20,NUMSLN) - Unused

IPTSLN Solution control pointers and flags

IPTSLN(1,NUMSLN) - Time dependence flag,

1=steady, 2=transient

IPTSLN(2,NUMSLN) - Iterative method flag,

1=Picard, 2=Newton

IPTSLN(3,NUMSLN) - Maximum number of iterations

IPTSLN(4,NUMSLN) - Time integration method flag,

1=Euler, 2=trapezoid, 3=explicit

IPTSLN(5,NUMSLN) - Capacitance matrix flag,

1=consistent, 2=lumped

IPTSLN(6,NUMSLN) - Time step option flag, 1=fixed step,

2=autostep

IPTSLN(7,NUMSLN) - Maximum number of time steps

IPTSLN(8,NUMSLN) - Predictor flag, 1=no predictor ,

2=predictor

IPTSLN(9,NUMSLN) - Unused

IPTSLN(10,NUMSLN) - Radiation solution method flag,

1=Gauss, 2=Progressive

IPTSLN(11,NUMSLN) - Maximum iterations for radiation

IPTSLN(12,NUMSLN) - View factor reform flag, 0=no reform,

1=steps reform, 2=time reform

IPTSLN(13,NUMSLN) - View factor reform, nsteps

IPTSLN(14,NUMSLN) - Type of matrix solver, 0=CG,

1=GMRES, 2=CGS, 3=QMR

IPTSLN(15,NUMSLN) - Krylov subspace dimension

IPTSLN(16,NUMSLN) - Type of preconditioner, 0=None,

1=Jacobi, 3=polynomial, 4=ILU, 9=IC

IPTSLN(17,NUMSLN) - Order of polynomial preconditioner

IPTSLN(18,NUMSLN) - Maximum number of solver iterations

IPTSLN(19,NUMSLN) - Print flag, 1=summary, 2=detailed,

appendix d.tex Revision : 1.1

144 CHAPTER 7. APPENDICES

IPTSLN(20,NUMSLN) - Print frequency

Presolution and Solution Data

DIMENSION IPTE2N(NUMEL+NUMSRF+1)

DIMENSION ICNE2N(MXNDEL*NUMEL+NUMSRF+NUMNDE)

DIMENSION IPTN2E(NUMNOD+NUMSRF+1)

DIMENSION ICNN2E(MXNDEL*NUMEL+NUMSRF+NUMNDE)

DIMENSION IPTN2N(NUMNOD+NUMSRF+1)

DIMENSION NODLST(MXNDE), IJK(MEMCHT+NUMNOD+MEMTER+MEMQER+2)

DIMENSION TN(NUMNOD), TPNP1(NUMNOD), TDOT(NUMNOD), SCRTCH(NUMNOD)

DIMENSION BNDVAL(MXNNPS)

DIMENSION BIGK(NNZERO), BIGF(NUMNOD)

DIMENSION DSPLX(NUMNOD), DSPLY(NUMNOD), DSPLZ(NUMNOD)

DIMENSION XZERO(NUMNOD), YZERO(NUMNOD), ZZERO(NUMNOD)

DIMENSION VELX(NUMNOD), VELY(NUMNOD), VELZ(NUMNOD)

DIMENSION VHEAT(NUMNOD), AMAG(NUMNOD)

DIMENSION QX(NUMNOD), QY(NUMNOD), QZ(NUMNOD), NODFLX(NUMNOD)

Array Description

IPTE2N Pointer for element to node connectivity

ICNE2N Vector containing element to node connectivity

IPTN2E Pointer for node to element connectivity

ICNN2E Vector containing node to element connectivity

IPTN2N Pointer for node to node connectivity

NODLST Temporary list of node numbers for an enclosure

IJK Pointers for sparse matrix storage

TN Solution vector (current nodal temperatures)

TPNP1 Predicted solution vector

TDOT Temperature rate vector

SCRTCH Scratch solution vector

BNDVAL Boundary conditions for nodal points

BIGK Global matrix (sparse matrix format)

BIGF Global force vector

DSPLX Nodal point displacements, x component

DSPLY Nodal point displacements, y component

DSPLZ Nodal point displacements, z component

Revision : 1.1 appendix d.tex

APPENDIX D - COMMON BLOCK AND ARRAY STORAGE 145

XZERO Reference nodal point coordinates, x component

YZERO Reference nodal point coordinates, y component

ZZERO Reference nodal point coordinates, z component

VELX Nodal point velocities, x component

VELY Nodal point velocities, y component

VELZ Nodal point velocities, z component

VHEAT Nodal point volume heating (external)

AMAG Nodal point magnetic field (external)

QX Nodal point heat flux component

QY Nodal point heat flux component

QZ Nodal point heat flux component

NODFLX Number of fluxes per node

Chemistry Solution Data

DIMENSION SPEC(MXSPEC,MXCHPT,NUMREL)

DIMENSION QCHEM(MXCHPT,NUMREL)

DIMENSION SPECGP(MXSPEC,MXCHPT), SPECEL(MXELBK)

DIMENSION CHMWRK(IWRK)

DIMENSION GSFR(MXCHPT,NUMREL), GSFREL(NUMREL)

Array Description

SPEC Chemical species solution array

QCHEM Chemical heat source array

SPECGP Chemical species solution at element integration points

SPECEL Chemical species solution at element centroids

CHMWRK Chemistry work array for CHMSOL

GSFR Gas fraction at element integration points

GSFREL Gas fraction at element centroids

Postprocessing Data

DIMENSION GLBLV(NVARGL)

DIMENSION IPPNOD(10), IPPELM(5), IPPGLB(25)

appendix d.tex Revision : 1.1

146 CHAPTER 7. APPENDICES

Array Description

GLBLV Global variable vector

IPPNOD Output flags for nodal variables (0=omitted, 1=output)

IPPNOD(1) - Flag for nodal displacement, x component

IPPNOD(2) - Flag for nodal displacement, y component

IPPNOD(3) - Flag for nodal displacement, z component

IPPNOD(4) - Flag for temperature

IPPNOD(5) - Flag for temperature rate

IPPNOD(6) - Flag for heat flux, x component

IPPNOD(7) - Flag for heat flux, y component

IPPNOD(8) - Flag for heat flux, z component

IPPNOD(9) - Flag for heat flow function (2D)

IPPNOD(10) - Unused

IPPELM Output flags for nonchemistry element variables (0=omitted, 1=output)

IPPELM(1,NUMBLK) - Flag for element status variable

IPPELM(2,NUMBLK) - Unused

IPPELM(3,NUMBLK) - Unused

IPPELM(4,NUMBLK) - Unused

IPPELM(5,NUMBLK) - Unused

IPPGLB Output flags for global variables (0=omitted, 1=output)

IPPGLB(1) - Flag for timestep

IPPGLB(2) - Flag for number of cg iterations

IPPGLB(3) - Unused

IPPGLB(4) - Unused

IPPGLB(5) - Unused

IPPGLB(6) - Flag for special output point 1

IPPGLB(7) - Flag for special output point 2

IPPGLB(8) - Flag for special output point 3

.

.

.

IPPGLB(13) - Flag for special output point 8

IPPGLB(14) - Flag for special output point 9

IPPGLB(15) - Flag for special output point 10

IPPGLB(16) - Flag for integrated flux surface 1

IPPGLB(17) - Flag for integrated flux surface 2

IPPGLB(18) - Flag for integrated flux surface 3

.

.

Revision : 1.1 appendix d.tex

APPENDIX D - COMMON BLOCK AND ARRAY STORAGE 147

.

IPPGLB(23) - Flag for integrated flux surface 8

IPPGLB(24) - Flag for integrated flux surface 9

IPPGLB(25) - Flag for integrated flux surface 10

appendix d.tex Revision : 1.1

148 CHAPTER 7. APPENDICES

Revision : 1.1 appendix e.tex

APPENDIX E - EXTERNAL MESH GENERATOR FILE CONTENTS 149

Appendix E - External Mesh Generator File Con-
tents

The file structure recognized by COYOTE for reading data from an external mesh gen-

erator is based on the EXODUS II [6] standard. The contents of the file are summarized

below in the order in which data is normally read by COYOTE. Note that the EXO-

DUS II file is a random access file and the actual reading and writing of data records

is accomplished through a subroutine interface that is documented in [6]. File opening

and closing is also handled through a subroutine interface. COYOTE reads and writes

EXODUS II mesh data in subroutines OPNFIL,EXOINQ,EXOSIZ and EXORD.

C

C Heading and Problem Sizing Parameters

C

C MSHHED - Problem title from mesh generator (CHARACTER*80)

C NUMNOD - Number of nodes

C NUMDIM - Number of coordinates per node

C NUMEL - Total number of elements

C NUMBLK - Number of element blocks

C NUMNS - Number of nodal point sets

C NUMSS - Number of element side sets

C

C QA Records

C

C QAREC(1,NQAREC) - Code name (CHARACTER*8)

C QAREC(1,NQAREC) - Version (CHARACTER*8)

C QAREC(1,NQAREC) - Run time (CHARACTER*8)

C QAREC(1,NQAREC) - Run date (CHARACTER*8)

C

C Nodal Point Coordinates

C

C X(NUMNOD) - X coordinate

C Y(NUMNOD) - Y coordinate

C Z(NUMNOD) - Z coordinate

C NAMECO(NUMDIM) - Names of coordinates

C

C Element Block Parameters

C

C IDBLK(NUMBLK) - Element block ids (must be unique)

appendix e.tex Revision : 1.1

150 CHAPTER 7. APPENDICES

C

C For each element block

C

C NUMELB - Number of elements in the block (the sum of NUMELB

C over all blocks must equal NUMEL above)

C ELTYP - Name of element type in this block (CHARACTER*8)

C NELNOD - Number of nodes defining the connectivity for the

C element in this block

C NATRIB - Number of element attributes for this element type

C

C ICONBK(NELNOD,NUMELB) - Element connectivity for the block

C ATRBBK(NATRIB,NUMELB) - Element attributes for the block

C

C Nodal Point Boundary Condition Data

C

C LNSNL - Length of the node set node list

C

C IDNS(NUMNS) - Node set ids

C NNNS(NUMNS) - Node set node counts

C NDFNS(NUMNS) - Node set distribution factor counts

C IPNNS(NUMNS) - Node set node pointers

C IPDFNS(NUMNS) - Node set distribution factor pointers

C LSNNS(LNSNL) - Node set node list

C DFNS(LNSNL) - Node set distribution factor list

C

C Element Side Set Boundary Condition Data

C

C LSSEL - Length of the element side set element list

C LSSDF - Length of the element side sets distribution factor list

C

C IDSS(NUMSS) - Element side set ids

C NESS(NUMSS) - Element side set element counts

C NDFSS(NUMSS) - Element side set distribution factor counts

C IPESS(NUMSS) - Element side set element pointers

C IPDFSS(NUMSS) - Element side set distribution factor pointers

C LSESS(LSSEL) - Element side set element list

C LSSSS(LSSNL) - Element side set side list

C DFSS(LSSDF) - Element side set distribution factor list

C

Revision : 1.1 appendix e.tex

APPENDIX F - POST-PROCESSING FILE CONTENTS 151

Appendix F - Post-Processing File Contents

The file structure employed by COYOTE to write data for an external post-processing

file is based on the EXODUS II [6] standard. The contents of the file include all of the

data records from the mesh generation file (Appendix D) plus the results records which

are summarized below. The EXODUS II file is a random access file and the recording

of data is performed through a series of subroutine calls. Post-processing data is written

by COYOTE in subroutines EXOSET, SETIC and EXOWRT.

C

C Output Variable Sizing Parameters

C

C NVARNP - Number of variables for each node

C NVAREL - Number of variables for each element

C NVARGL - Number of global variables

C

C Variable Names

C

C NAMENV(NVARNP) - Names of nodal variables (CHARACTER*8)

C NAMEEV(NVAREL) - Names of element variables (CHARACTER*8)

C NAMEGV(NVARGL) - Names of global variables (CHARACTER*8)

C

C Element Variable Truth Table

C

C ITRUTH(NVAREL,NUMBLK) - Output flag for element variables within

C each element block

C

C Solution Records (repeat for each timeplane)

C

C TIME - Current solution time

C

C SOLNNP(NUMNP) - Solution at the nodal points (repeat for each

C variable, as needed)

C SOLNEL(NUMELB) - Solution at for each element (repeat for each

C element block and variable, as needed)

C SOLNGL(NVARGL) - Solution for each global variable

C

appendix f.tex Revision : 1.1

