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Introduction

We begin our study of nonlinear computational solid mechanics in this chapter by
surveying some frequently encountered sources of nonlinearity in engineering mech
This will be done in a rather elementary way by discussing the truss member, which
perhaps the simplest structural idealization and which is assumed to transmit loads
axial direction only. By introducing various nonlinearities into this system one at a tin
we will motivate the more general discussion of nonlinear continuum mechanics,
constitutive modeling, and numerical treatments to follow. This model system will se
as a template throughout the text as new continuum mechanical and computational
are introduced.

Following this motivation will be an introduction to the prescription of initial/boundary
value problems in solid mechanics. This introduction will be provided by discussing :
completely linear system; namely, linear elastic behavior in a continuum subject to
infinitesimal displacements. This treatment will include presentation of the relevant fi
equations, boundary conditions, and initial conditions, encompassing both dynamic
guasistatic problems in the discussion. Also featured is a brief discussion of the “wee
“Integral” form of the governing equations, providing a starting point for application of
finite element method. Examination of these aspects of problem formulation in the
comparatively simple setting of linear elasticity allows one to concentrate on the idea
concepts involved in problem description without the need for an overly burdensome
notational structure.
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In anticipation of nonlinear solid mechanics applications, however, we will find it
necessary to expand this notational framework so that large deformation of solids ce
accommodated. Fortunately, provided certain interpretations are kept in mind, the fo
the governing equations is largely unchanged by the generalization of the linear elas
system. This chapter therefore provides an introduction to how this generalization ce
made. However, it will be seen that the continuum description and constitutive mode
of solids undergoing large deformations are complex topics that should be understot
detail before accompanying numerical strategies are formulated and implemented. 1
closely related topics of nonlinear continuum mechanics and constitutive modeling v
therefore be the subjects of the following two chapters, with significant discussion of
numerical strategies being deferred-toite Elements

This introduction is concluded with a short list of references the reader may find use
background material. Throughout the text we assume little or no familiarity with eithe
finite element method or nonlinear solid mechanics, but we do assume a basic level
familiarity with the mechanics of materials, linear continuum mechanics, and linear
elasticity. Accordingly, these basic references are intended for those readers wishing
gaps in knowledge.

Theory Manuals (8/24/98) Formulation of Nonlinear Problems - Introduction - Introduction
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Linear Structural Component

We consider the simple axial (or in structural terms, truss) member shown schematic:
Figure 1.1. We can think of this member as a straight bar of material whose transver
dimensions are small compared to its overall length and which can only transmit loa
the axial direction. Real world examples include taut cables in tension, truss member
similar rod-like objects.

J )

u(x)
-

x =0 x =L,

Figure 1.1 Axial model problem: schematic and local coordinate system.

We index the material with coordinateswhich run between valu€sandL ; . Assuming

that all displacement of the rod occurs in the axial direction, we write this displaceme
u(x,t ), witht signifying time. Thanfinitesimal, orengineering strain at any point
x 0 (0, Ly) Iis given by

d

ee(x,t) = a—xu(x,t ). (1.1)

Theory Manuals (8/24/98) Formulation of Nonlinear Problems - Nonlinear Behavior - Linear Structural Component
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Thetrue stresso; at any point in the bar and at any instant is described via

P(x,t)

orxt) = 1)’

(1.2)

whereP is the total axial force acting at locatiwnandA is the current cross-sectional
area at that location. If the cross-sectional area does not change very much as a res
the deformation, it is appropriate to define tioeninal, or engineering stressas

- P(x,t)

°E T AX)

(1.3)

whereA,(x) is the initial cross-sectional area at poirlt the material behaves in a

linear elasticmanner, thew. anek are related via

o = Eeg, (1.4)
whereE is theelastic modulus or Young’s modulus for the material.

To begin we consider the casestditic equilibrium where inertial effects are either
negligible or nonexistent, and the response is, therefore, independent of time. One ¢
this case suppress the time argument in Egs. (1.2) and (1.4). The balance of linear
momentum for the static case is expressed at eachxpbiynt

D (Ag(x)o(x)) = f &), (15)

Theory Manuals (8/24/98) Formulation of Nonlinear Problems - Nonlinear Behavior - Linear Structural Component
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wheref is theapplied external loading assumed to be axial, with units of force per ur
length. Substitution of Eq1.4)into (1.5)gives the following ordinary differential

equation fou(x) on the domairgo, L )

%% w%—f (1.6)

If we assume that the cross-section is uniform, soAgat  does not vawy, &t that
the material if"omogeneousso thate does not vary throughout the rod, one gets furth
simplification:

2

EA-Lu(x) = f . (1.7)
dx

We note that (1.7) is a linear, second order differential equation for the unknown
displacement field. To pose a mathematical problem that can be uniquely solved, it
necessary to pose tvboundary conditionson the unknowm. We will be interested
primarily in two types, corresponding poescribed displacementndprescribed force
(or stress) boundary conditions. An example of the former would be

u(0) = @, (1.8)

while an example of the latter is

0e(Ly)= Eg_:‘((LO) = o, (1.9)

Theory Manuals (8/24/98) Formulation of Nonlinear Problems - Nonlinear Behavior - Linear Structural Component



M
SEACAS
Library

I“-"‘-

Theory
Manuals

Formulation of
Nonlinear
Problems

- -

Nonlinear
Behavior

< Go Back

wheretl ands are prescribed values for the displacement and axial stress at the le
right bar ends, respectively. In mathematics parlance the type of boundary condition
(1.8)is called airichlet boundary condition, while the sort of boundary condition
represented bfl.9) is aNeumannboundary condition. Dirichlet boundary conditions
involve the unknown dependent variable itself, while Neumann boundary conditions
expressed in terms of its derivatives.

Virtually any combination of such boundary conditions can be applied to our problem
only one boundary condition (i.e., either a Neumann or Dirichlet condition) can be ap
at each endpoint. In the case where Neumann (stress) conditions are applied at botl
of the bar, the solution(x) is only determinable up to an arbitrary constant (the reade
may wish to verify this fact by applying separation of variables td’ Ed)).

We now consider a particular case of this linear problem we have posed that will be
In considering some of the various nonlinearities to be discussed below. In particulat

supposd = 0 onthe domaff,L,) , and furthermore consider the boundary cond

u==0atx =0 (1.10)
and
pext
O = —— atx =1L, (1.11)
Ao

whereF™! is an applied force on the right end of the rod.
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In this case examination of Eq(1,5) yields
A3 (o(x)) = 0 (1.12)
de E d '

meaning thabg does not vary along the length of the rod. 8ince IS proportiepal 1

(see Eq(1.4)), the strain must also be a constant value along the rod length. Finally,
view of Eq.(1.1), we conclude that(x) must vary linearly witlx. In other words, we
know that the solution(x) must take the form

u(x) = u(0) +dox = ox, (1.13)
whered is the elongation or difference between the left and right end displacement.

problem therefore reduces to finding the elongation produced by the applieﬁef)étrce

This problem is trivially solved and leads to the familiar linear relationship betwaen
ando:

E
“log - e (1.14)
LO

E
In other words, we have a simple linear spring with stiffnfé% . After solvirgdoe
0

may merely substitute into (1.13) to obtain the desired expressiaxfpr
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Material Nonlinearity

We can examine the case of a so-cathederial nonlinearity by replacing Eq(l1.4)with
the following generic relationship betweep  and

op = O(gg), (1.15)

whered is a smooth and generally nonlinear functionKspee 1.2).

We make few restrictions on the specific formoof  other than to assum(%mato

all values ofec. If we retain the assumption that= 0  and impose boundary conditic
(1.10)and(1.11) then Eq(1.12)is still valid, that is:

ext

O = —— (1.16)

T

throughout the rod.

Furthermore, since we assume that a one-to-one relation exists betweene., wed
can conclude that just as in the linear case, the strain is a constant value in the rod g

o= (1.17)

Theory Manuals (8/24/98) Formulation of Nonlinear Problems - Nonlinear Behavior - Material Nonlinearity
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A O
o(x)
- >
€
Y
Figure 1.2 Schematic of a nonlinear, one-dimensional stress-strain relation.

We can solve the problem by findid@gs before, but now we must solve the nonlinear
equation

~10[] _ ext
AOGELOD F (1.18)

Let us reexpress Eq. (1.1&83 an equation for the displacement at the right end, which
shall denote ad; = u(L) .We can write

N(d,) = F*, (1.19)

whereN(d, ) is a nonlinear function of the unknodjn defined in this case as

N(d,): = AOGdjLD (1.20)

QLo

Theory Manuals (8/24/98) Formulation of Nonlinear Problems - Nonlinear Behavior - Material Nonlinearity



g In general, Eq(1.20)will not have a closed-form solution, and some sort of iterative
M procedure is necessary. Among the most common and widely used of such procedu
SEACAS Newton-Raphson iteration In this method one introduces a set of indices,
ey corresponding to the iterations and given a current iteuiéagte, , a first-order Taylor se
Iiiii expansion 0o(1.20)is utilized to generate the next iteraﬂl@,+ 1
Theory
Manuals 0= |:eX'[_N( d|i_+1) —~ Fext_%\K dll_) N(d )Ad D’ (1_21)
§ r :
I where
Formulation of
Nonlinear . .
Problems dIL = dll_ + AdL. (1.22)
e Equation (1.21) can be expressed more compactly via
e Mefisl, = R )
< Go Back : . .
whereR(d| ) , theesidual or out-of-balance force is given by
R(d!): = F&t—N(d}), (1.24)
and K(d ) , thancremental or tangent stiffness is written as
K(d!):= ——N(d! 1.25
(d}):= dd (d). (1.25)

Theory Manuals (8/24/98) Formulation of Nonlinear Problems - Nonlinear Behavior - Material Nonlinearity
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Geometric Nonlinearity

Geometric nonlinearitiesare induced by nonlinearities in the kinematic description of
the system at hand. We will identify and work with several nonlinearities of this gene
type throughout the text, but to begin we will consider two particular cases, still work
in the context of our simple model problem.

The first type of nonlinearity we consider is introduced by the use of nonlinear strain
stress measures in definition of the stress-strain relation. As an example let us cons

alternatives to Egq¢l.1) and(1.3), which defined the engineering stragpp  and
engineering stressz  that we have utilized to this point. When used in our model prc

with f = 0 and boundary conditior§{$.10)and(1.11) we have seen that the engineerin
strain does not vary over the rod’s length, having the constantgalue . The

0
appropriateness of this strain measure depends upon the amount of deformation;

specificallyd should be infinitesimal for this measure to be appropriate. In the presen
larger deformations, thteue, orlogarithmic, strain is often used:

Ldy:

€1 = ILOV IogELLd] = log(1+¢g). (1.26)

Theory Manuals (8/24/98) Formulation of Nonlinear Problems - Nonlinear Behavior - Geometric Nonlinearity
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Similarly if the cross-sectional ardachanges appreciably during the process, it is likel
that the engineering stresg  should be replaced by the truecstress  defined in E

(1.2). In the case of our model problem, this would imply

B 1.27
or = —, :
== (1.27)
whereA is to be interpreted as the cross-sectional area in the final (deformed)
configuration.

Relating this area to the elongatidnequires a constitutive assumption to be made. Fo
example, if we assume the rod consists of an isotropic elastic material, we could
approximate this variation by considering the area to vary according to Poisson’s eff

This would require that for each differential incremeet In the axial true strain, ea

lateral dimension should be changed by a fact¢f efvde) , WhisrBoisson’s ratio

for the material. At a given instant of the loading process, therefore, an incremental cl
In the ared can be approximated via

A+dA = (1-vde;)°A= (1-2vde)A. (1.28)

Integrating (1.28) between the Initial alkg  and the final area and using (1.26) give

X7 _ o O -0
Ao = Ao (1.29)

If we assume that

Theory Manuals (8/24/98) Formulation of Nonlinear Problems - Nonlinear Behavior - Geometric Nonlinearity
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o = Eg&q, (1.30)
then we can use Eg4..26) (1.27) and(1.29)to conclude that

—0 [0 a0 " 11 .
Y IogD Tk (1.31)

which is an obviously nonlinear equation governing the elongatitiote that this
nonlinearity is not caused by any sort of nonlinear stress-strain relation but instead r
from the observation that the amount of deformation may not be small, necessitating
general representations of stress and strain.

The second sort of nonlinearity we wish to consider is that caused by large superim|
rigid body rotations and translations that introduce nonlinearities into many problems
when the strains introduced into the material are well-approximated by infinitesimal
measures. Toward this end we refeFitgure 1.3 in which we imbed our one-
dimensional truss element in a two-dimensional frame. We locate one end of the rod
origin and consider this end to be pinned so that it is free to rotate but not to translate

other rod end, initially located at coordina(exs?, xg) , IS subjected to a (vector value

force F& , Which need not be directed along the axis of the rod.

Theory Manuals (8/24/98) Formulation of Nonlinear Problems - Nonlinear Behavior - Geometric Nonlinearity
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Figure 1.3 Model problem with infinitesimal motions superposed on large rigid body motions.
We note that if we placed a restriction of small motions this problem would be ill-pos

since the rod is incapable of transmitting anything but axial f(Fr%Xé, would need tc
in the axial direction in this case. In the current context we allow unlimited rotation to

place with the result being, of course, that the rod will rotate until it alignst?/ffh Ir
equilibrium condition. In fact, this observation allows us to guess the solution to the
problem. Since we assume that the axial response of the rod is completely linear, w
deduce that the final elongation is given by

LolF*q
5= ~EA— (1.32)
WhereHFexﬂ denotes the Euclidean length of the veetor . The final orientation of

rod must coincide with the direction BF , SO we can write the final position of the t

end using the coordinatéxfl, sz) as:

Theory Manuals (8/24/98) Formulation of Nonlinear Problems - Nonlinear Behavior - Geometric Nonlinearity
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Library |2 2]
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i il
Theory — - o
Manuals ext 0
d Ly O X0 F X
TR 1 — ec))( l+ HE tH 1 "1 . (134)
iy 4 [P0 ERDjpee | |0
Formulation of i ) -
';?Qtl;{:ﬁ; It is instructive to proceed as though we do not know the solution summarized in (1.
and formulate the equilibrium equations goverming  @yd
If we observe that the elongatiérof the rod can be written as
Nonlinear
Behavior
0,2 0,2
< Go Back 5= ,J(dy +x9% + (dy +x9) - Lo, (1.35
then Eq(1.32)gives the relationship betwe&ﬁexﬂ and the unknown displacements
Furthermore, as noted above, the directioR B IS given by
ext d. + XO
£ L 17 %) (1.36)

HFexﬂ J(d1+X2)2+(d2+Xg)2_d2+Xg
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Manuals
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N(d) = F® (1.38)
d
d=|1 1.39
H w39
2 2 i N
N(d) = E%J(d1+xg) +(d2+xg) —-L, d1+x§. (1.40)

2 2
LOJ(d1+x2) + (d2+x(2)) _d2+x2_
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M a Newton-Raphson strategy to solve (1.38) via
SEACAS . _ _
=leliElgy K(d' )Ad = R(d') = F&t—N(d') (1.41)
iy | @
Vot di *1 =di +Ad, (1.42)
Y r :: where
I ] _
lati f
“Noninear ON, oN,
Problems . . od. od
k(d') = M’y = °°2 %2 (1.43)
2! e aNZ aNz
Nonlinear adl d _
Behavior - g =4
< Go Back .
Carrying out the calculation (N(d' )  for the speciNi¢d) at hand gives
K(d') = Kgiree(d' ) + Kgeonfd' ). (1.44)
Kgirec(d' ) is given by
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AE

NIW

0.2 0.2
i [(d1+X1) +(0'2“(2)}
Kairecd ) = : (1.45)

(@ 1+x7)" (@ 1rx))d 2+x)

@ 1exO 24xY @ 2+xY°
andKgo(d') is

. Dl 1 O
Keom(dl) :AOED__ %10_
2 EFO 0,2 0,710 1
(d1+x1) +(d2+x2)

(1.46)

As the notation suggests,, ..« IS sometimes referred to dg¢aestiffnessor that part
of the stiffness emanating directly from the material stiffness of the system at hand.

ngom(dI ), on the other hand, is sometimes calledgga@metric stiffnessand arises not

from the inherent stiffness of the material but by virtue of the large motions that the
current problem allows.

To gain some insight into these issues in the current context, consider the case whe

i 0. . : . . ,
Hd H « Hx ; 1.e., the case where the motions are small in comparison to the rod’s ler
In this case we find
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ngom(d' ) - 0, (1.47)

and

: A-E :
K. (d) - 0—|CcosOcosO® cosOsIinO | (1.48)
direct L )
0 | cCOSOSIN® cosBOcosO

where® = ata B IS the angle between the original axis of the truss member and
L

positivex-axis. In other words, when the motions become small, the geometric stiffne

vanishes, and the direct stiffness becomes the familiar stiffness matrix associated w

two-dimensional truss member.

Theory Manuals (8/24/98) Formulation of Nonlinear Problems - Nonlinear Behavior - Geometric Nonlinearity
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Library A final type of nonlinearity we wish to consider is that created due to contact with anc
= deformable or rigid entity. As a simple model problem for this case, we refer to Figure
I"“ where we consider a prescribed mottbn  of the left end of our one-dimensional rod
Theory consider the unknown displacemenof the right end to be subject to the constraint
Manuals
d) =d-g,<0, 1.49
i g(d) = d-g, (1.49)
Formulatlionof whereg, is the initial separation, gap, between the right rod end and the rigid obstac
Nonlinear
Problems
T 97 Rigid
Obstacle
Nonli
T - -
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Figure 1.4 Schematic of the rigid obstacle problem.
Even if we assume that the motions are small and the material response of the rod i
elastic, the equations governing the response of our rod are nonlinear. To see this, i
choosed as our unknown and construct the following residR(a) for our system
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AgE

R(d) = >

(d-d)+F_, (1.50)
whereF. , the contact force between the obstacle and the rod (assumed positive in
compression), is subject to the following constraints:

F.=0; g(d)<0 and F.g(d) = 0. (1.51)

Equations (1.51) are callé&uhn-Tucker conditions in mathematical parlance and
physically require that the contact force be compressive, that the rod end not interper

the obstacle, and that the contact force only be nonzero gviei® ; 1.e., when cor
between the rod and obstacle occurs. In fact, IS a Lagrange multiplier in this prok

enforcing the kinematic constraifit.49) We see that the condition operating on the rig
end of the bar is neither a Dirichlet nor a Neumann boundary condition; in fact, both
stress and the displacement at this point are unknown but are related to each other t
constraints (1.51).

Plots of the residual defined (f1.50)and (1.51) are given iaigure 1.5for the two
distinct cases of interest: where contact does not occur (i.e.,dvhen ) and whet

contact does occur (wheh>g, ). The solutions (i.e., the zeiRsast readily apparent.

When no contact occurd, = d , while in the case of contiaet, g, . The internal
stresses generated in the bar are then readily deduced.
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One may note froririgure 1.5some important practical features of this problem. First,
both cases the admissible regiondds restricted to be less thgg . Second, at the va

d = g,, each diagram shows the residual to be multiple-valued, which is a direct

consequence of the fact that in this condition (i.e., wgere 0 F_ ), can lpositiye

number.

(@) (b)

Figure 1.5 Plots of residuals versus displacement for rigid obstacle problem: (a) the case where
d <gg (no contact) and (b) the case wheré 2g, (contact).

Finally, although the solution to our simple model problem is readily guessed, we ca
from both cases that the plotRfversusd is only piecewise linear; the kink in each
diagram indicates the fact that a finite tangent stiffness operates when contact is not
changing to an infinite effective stiffness imposed by EQ51)when contact between
rod and obstacle is detected. This contact detection therefore becomes an importan
feature in general strategies for contact problems and introduces both nonlinearities
nonsmoothnesses into the global equations as this rather simple example demonstr
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Introduction and Notation

Having reviewed some relevant nonlinearities in the context of an admittedly simple
structural element, let us begin to generalize our problem description to encompass
larger group of continuous bodies. We begin this development by first reviewing the |
equations of linear elasticity, where we assume small motions and linear material
behavior. This discussion will provide the basis for a more general notational framew
in the next section where we will remove the kinematic restriction to small motions a
also allow the material to behave in an inelastic manner.

The notation we will use in this section is summarizeldigure 1.6 where we have

depicted a solid body positioned in three-dimensional Euclidean spﬁbse or .Thes
spatial pointx defining the body is denotedby , and we consider the bodfdary
be subdivided into two regions,, ahgd , where Dirichlet and Neumann boundary

conditions will be specified as discussed below. We assume that these regions obey
following

= 0Q . (1.52)
r =10

_I
c
D [
=
Q
I

The unknown, or dependent variable, in this problem is , the vector-valued displace
which, in general, depends uprri] Q and ttme
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Equations of Motion

At any point inQ , the following statement of local linear momentum balance must he

2

oor+f = 24 (1.53)

ot 2

Note thatl] [T denotes the divergence operator applidd to , the Cauchy stress ten

The vectof denotes the distributed body forceldn , with units of force per unit volur
andp denotes the mass density, which need not be uniform. Equation (1.53) represel
balance of linear momentum in so-called direct notation; balance of angular moment
enforced by the assumption that the terfisor is symmetric. We will frequently emplc
indicial notation in the work that follows. Toward that end Eq. (1.53) can be reexpres
as

Ty +fi = p—, (1.54)

where indices andj run between 1 and 3, and repeated indices within a term of an
expression imply a summation over that index, that is:

3
j

Theory Manuals (8/24/98) Formulation of Nonlinear Problems - Linear Elastic IBVP - Equations of Motion



M
SEACAS
Library

I“-"‘-

Theory
Manuals

I i‘i

Formulation of
Nonlinear
Problems

- -

Linear
Elastic IBVP

< Go Back

One should take the notaticﬁrnj to indicate partial differentiation with respe(t to

When using indicial notation repeated indices will always imply sums unless otherwi
indicated.

As indicated above, the dependent variables ara;the , so it is necessary to specif

relation between the displacements and the Cauchy stress. In linear elasticity this is
accomplished by two additional equations. The first is the strain-displacement relatic

1

where the notation(i i) IS used to denote the symmetric part of the displacement

gradient. The second equation is the linear constitutive relation bewl\feen Eij and
which is normally written via

Note thatC;, Is the fourth-order elasticity tensor, to be discussed further below.
Equations ,(1.56) and (1.57) can also be written in direct notation via

E=0.u = %(Du +0u") (1.58)

S
and

T = CE, (1.59)
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where the colon indicates double contraction of the fourth-order t€nsibh the second-
order tensoE.

The fourth-order elasticity tens@ris ordinarily assumed to possess a number of
symmetries that greatly reduce the number of independent components that descrik

possessemajor symmetry, which mean<,, = C; . anditis also assumed to
haveminor symmetries meaning, for example, that

Ciik = Gk =Gk = Gk -Anotherimportant property of the elasticity tensc
IS positive definiteness, which implies in this context that

Aij G A >0 for all symmetric tensors A (1.60)

In the most general case, assuming the aforementioned symmetries and no others,
elasticity tensor has 21 independent components. Various material symmetries redu
number greatly, with the most specific case being given by an isotropic material that
possesses rotational symmetry in all directions. In this case only two independent el
constants are required to spedifywhich under these circumstances can be written as

Ciki = A0 O +ulo 0 +0y O ], (1.62)

whereg;; , thekronecker delta, satisfies

Theory Manuals (8/24/98) Formulation of Nonlinear Problems - Linear Elastic IBVP - Equations of Motion
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SEACAS
Library
andA andp denote thd.ame parametersfor the material. These can be written in term
Iiiii of the more familiar elastic modulus and Poisson’s ratio via
Theory Ev
A= 1.64
Manuals (1+V)(1—2V) ( )
. l| - = 1.65
Formulation of u 2( 1+ V) ( )
Nonlinear

Flig el The quantityu is also known as thleear modulusfor the material.

- -

Substitution of1.58)and(1.59)into (1.53)gives a partial differential equation for the

— vector-valued unknown displacement fialdrFull specification of the problem at hand
Elastic IBVP must include suitable boundary and initial conditions as discussed next.
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Boundary and Initial Conditions

Paralleling the earlier discussion of the one-dimensional example, we will consider t
possibility of two types of boundary conditions, Dirichlet and Neumann. Dirichlet

boundary conditions will be imposed on the redign Figure 1.6as follows:
u(x,t) =o(x,t)Ox 0o ,t0(0T). (1.66)

Note thatti(x,t ) denotes a prescribed displacement vector depending, in general,
spatial position and time. The simplest and perhaps most common example of such
boundary condition would be a fixed condition that, if imposed throughout the time

interval of interes(0, T) and for all ¢f, , would implyx,t) = 0

The other type of boundary condition is a Neumann or traction boundary condition. -
write such a condition, we must first define the concepaofion on a surface. If we use

n to denote the outward normal to the surflge  at a pdihf | , the traction vec

t atx Is defined via
t =Tn , (1.67)
or in indicial notation

t =T.n . (1.68)
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Physically this vector represents a force per unit area acting on the external swface &
Neumann boundary condition is then written in the current notation as

T((x,t)n(x)) = & ,t)Ox 0T ,t O(0,T). (1.69)

Note thatt k ,t ) Is the prescribed traction vector field gn< (0, T) . One could
identify several examples of such a boundary condition. An unfixed surface free of a
external forcing would be described by=0 . A surface subject to a uniform presst

loadingp , on the other hand, could be described by séttingt ) = —pn(x) , Whe
we assume a compressive pressure to be positive.

With these definitions in hand, we recall the restrictd@s2)onl", and ; and

physically interpret them as follows: 1) one must specify either a traction or a

displacement boundary condition at every poind@f ; and 2) at each pofit of , 0
may not specify both the traction and the displacement but must specify one or the «
In fact, these conditions are slightly more stringent than required. For example, the
problem remains well-posed if, for each component directjome specify either the

traction componerit; or displacement compongnt  at eachypalaQ as long ¢
a given spatial direction, we do not attempt to specify both.

In other words, we may specify a displacement boundary condition in one direction :
point while specifying a traction boundary condition in the other. An example of such
case would be the common “roller” boundary condition where a point is free to move
traction-free manner tangent to an interface (i.e., a traction boundary condition), whi
being constrained from movement in a direction normal to an interface (i.e., a
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displacement boundary condition). Of course, a multitude of other boundary conditic
permutations could be identified. Thus, while we choose a rather simple boundary
condition restriction, summarized 03.52) for notational simplicity, it is important to
realize that many other possibilities exist and require only minor alterations of the
methodology we will discuss.

The final important ingredient in our statement of the linear elastic problem is the
specification of initial conditions. One may note that our partial differential equation
(1.53)is second order in time; accordingly, two initial conditions are required. In the

current context these amount to initial conditions on the displacament and the vels
u and can be rather straightforwardly specified via

u(x,0) = uy(x)onQ (1.70)

g_‘tj(x, 0) = vo(x) onQ, (1.71)

whereu, ands/, are the prescribed initial displacement and velocity fields, respecti
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SEACAS

Library We now collect the equations and conditions of the past two sections into a single prc
= statement for the linear elastic system showrgure 1.6. For the elastodynamic case
||||| this problem falls into the category of mitial/boundary value problem, since both
Theory types of conditions are included in its definition. Our problem is formally stated as

Manuals follows:

|} -;-i'i;:_ Giventhe boundary conditions dn, x(0,T) aod Iopx (0, T) , the initial
Formulationof | conditionsu, and/y; o0& , and the distributed body férom Q % (0, T) , find the

Nonlinear

Problems displacement fieldr of x (0, T) such that:

= - 2
Linear LT +f = pa_UZ onQ x (O, T), (1.72)
Elastic IBVP ot
= Go Back u(x,t) =ax,t)onl,x(0,T), (1.73)
tk,t)=t&,t)onl;x(0,T), (1.74)
u(x,0) = uy(x)onQ, (1.75)
ou _
ﬁ(x, 0) = vy(x) onQ, (1.76)
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The Quasistatic Approximation

Before leaving the elastic problem, it is worthwhile to discuss how our problem
specification will change if inertial effects are negligible in the equilibrium equations.
special case is often referred to asghasistatic assumptiorand considerably simplifies
specification of the problem.

Simply stated, the quasistatic assumption removes the second temporal derivative o
from (1.72)thereby eliminating the need for initial conditiqds/3)and(1.74) Such an

approximation is appropriate when the loadings do not vary with time or when they \
over time scales very much longer than the periods associated with the fundamenta

structural modes d@ . It is convenient, however, to maintain time in our description o

problem for two reasons: 1) the loadirigs  &rehd the displacement conditidn  may
still vary with time; and 2) when we consider more general classes of constitutive
equations, we may wish to allow time dependence in the stress/strain response.
Accordingly, we state below a boundary value problem appropriate for quasistatic
response of a linear elastic system.

Giventhe boundary conditions dn, x (0, T) T, ©onx(0,T) ,and the distributec
body forcef onQ x (0, T), find the displacement field &nx (0, T) such that:

Or+f = 00nQx(0,T), (1.78)

u(x,t) = a(x,t)onl,x(0,T), (1.79)

Theory Manuals (8/24/98) Formulation of Nonlinear Problems - Linear Elastic IBVP - The Quasistatic Approximation



tg,t)=f&,t)onl x(0,T), (1.80)

P
M

SEACAS where the Cauchy stre$s s given by
Library
i T = C:(Lgu). (1.81)
i o o |
We note in passing that given a timél (O, T) , Eds/8)through (1.81) constitute a

Th . . . . .
Manuas linear, elliptic boundary value problem governing the dependent vatiable

I i‘i

Formulation of
Nonlinear
Problems

- -

Linear
Elastic IBVP

< Go Back

Theory Manuals (8/24/98) Formulation of Nonlinear Problems - Linear Elastic IBVP - The Quasistatic Approximation



- M S e - M [; Ii‘-l - M

M

Introduction Nonlinear Linear Weak Forms Large
SEACAS Behavior Elastic Deformation
Library IBVP Problems

I“-"‘-

1 Weak Forms

Theory Introduction
Manuals

Quasistatic Case
EEEEN T
i .| ' Fully Dynamic Case

Formulation of
Nonlinear
Problems

< Go Back

i Blue text
indicates

a link to more

information.

Theory Manuals (8/24/98) Formulation of Nonlinear Problems - Weak Forms



M
SEACAS
Library

I“-"‘-

Theory
Manuals

I i‘i

Formulation of
Nonlinear
Problems

- -

Weak Forms

< Go Back

Theory Manuals (8/24/98)

Introduction

A key feature of the finite element method is the form of the boundary value problen
initial/boundary value problem in the case of dynamics) that is discretized. More
specifically the finite element method is one of a large number of variational method:
rely on the approximation of integral forms of the governing equations. In this sectiol
briefly examine how such integral (alternatively, weak or variational) forms are
constructed for the linear elastic system we have introduced.
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Quasistatic Case

It proves convenient from notational and conceptual viewpoints to consider the quasi
case first. Accordingly, we recall Eq4.78)through(1.81)and explore an alternative

manner in which these conditions can be stated. We consider a collection of vector-v
functionswthat we call weighting functions for reasons that will soon be clear. We req

that these functions:Q — [1° satisfy
w= 0onTl,,. (1.82)

Furthermore, it is assumed that these functions are sufficiently smooth so that all pa
derivatives can be computed. Suppose we have the salutib&qgs.(1.78)(1.81) We

can then take any smooth functian  satisfying (1.82) and compute its dot product w
(1.78) which must produce

wOOr+f) = 0onQ (1.83)

at each time [ (0, T) .We can then integrate (1.83)Xdver to obtain

[WHOOT+)dQ = 0. (1.84)
Q

Equation (1.84) can be manipulated further by noting that

wlOON) = 0Tw) —(Ow): T (1.85)
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(product rule of differentiation) and by also taking advantage of the divergence theor
from multivariate calculus:

[O0OTWdQ = (J(n Tw)dr . (1.86)
Q Q

Note thatn is the outward directed normal 0 |, aiid IS a differential area of this
surface. Use of Eq$l.85)and (1.86) ir(1.84)and rearranging gives

I(DW):TdQ = IWDfdQ+6[ (n CTw)dr . (1.87)
Q Q Q

Taking advantage of the symmetryTo&nd noting, from Eq.1.67) that the surface
tractiont equalsli'n, we can write:

J[(n Tw)dlr = aJ’(WDTn)dI' = metdr. (1.88)
Q Q Q

We now recall restrictiond.52) which tell us thadQ is the union bf, ahg . Sinc

by definitionw = 0 onl", , we can write

J[WDtdF = IWDtdI’+IWDtdF = J’WEEdF, (1.89)
Q ', 5 5
where the last equality incorporates the boundary conditiert ' ;on

We collect these calculations to conclude
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(COw):TdQ = (wifdQ + [(wlikdl, (1.90)
g frde

o

which must hold for the solutiam of Eqs.(1.78)(1.81)for anyw satisfying condition
(1.82)

In order to complete our alternative statement of the boundary value problem, the cor
of solution and variational spaces need to be introduced. Let us defgswutien space

S, corresponding to time via

S; = {uju=u(t)onl, uissmooth (1.91)
and theweighting spacéMia
W= {wjw= 0onTl ,, wis smooth. (1.92)

With these two collections of functions in hand, let us consider the following alternati
statement of the boundary value problem summarized byl1EX($:(1.81)

Giventhe boundary conditions dn, x (0, T) u, &R x(0,T) ,and the distributec
body forcef onQ x (0, T), findtheu U S, for each timell (0, T) such that:

I(DW):TdQ = J’wadQ+ IWEIt—dF (1.93)
Q r

Q (0)
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n Cauchy stres$ is given by
SEACAS

Library _ .

T = C:(0Oqu). (1.94)
||||| Since it explicitly requires only a weighted integral of the governing partial differentia
Theory equation to be zero, rather than the differential equation itself, this statement of the
Manuals boundary value problem is often referred to as a weak formulation.

{1 i‘i -. Based upon the above derivation of the weak form, it should be clear that the sphftiol
o I f Eqgs.(1.78)(1.81) (sometimes referred to as tteong form) will satisfy our alternative
Naon®t | statement summarized by E¢s.93)and (1.94). Less clear is the fact that solutions of t

Pl weak form will satisfy the strong form, as must be true for the two problem statemen

e be truly equivalent. Although not established here this equivalency can be rigorously

established; the interested reader should coftsughes, T.J.R., 1987for details. In the
Weak Forms | present discussion we simply remark that the equivalent argument depends crucially
the satisfaction of1.93)for all wJ W, with the arbitrariness @f rendering the two

< Go Back .
statements completely equivalent.

Peeking ahead to numerical strategies, we can also remark that approximate metho
in effect narrow our definitions of the solution and weighting spaces to so-tailled

dimensionalsubspaces. Simply stated, this means that rather than including the infir
number of smootlr andw satisfying the requisite boundary conditions in our problem
definition, we will restrict our attention to some finite number of functions comprising

subsets o5, anW/
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In so doing we introduce a difference between the solution of our (now approximate):
form and the strong form, where the degree of approximation is directly related to th
difference between the full solution and weighting spaces and the subsets of them u
the numerical procedure.

Finally, it is worthwhile at this point to make a connection to so-callégial work
methods that may be more familiar to readers versed in linear structural mechanics.
derivation we will work in indicial notation so that the meaning of the direction notatic

statements above can be reinforced. Accordingly, for a possible salution of the

governing equations, let us write the following expression for the total potential ener
the system at hand:

1
Q

—Lj;uifidQ—rJ'uit_idF]

Note that the first term on the right-hand side represents thstraial energy associated
with u; , and the last two terms represent the potential energy of the applied Idading

(1.95)

andt ; . Avirtual work principle for this system simply states that the potential energ

defined in (1.95) should be minimized by the equilibrium solution. Accordingly; let

now represent the actual equilibrium solution. We can represent any other, kinemati
admissible displacement field via + ew; , wherie a scalar parameter (not necessari
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small), andw; is a so-called virtual displacement that we assume to obey the bounc

conditions outlined ir{1.82) This restriction on the,  causes + ew. to satisfy the

Dirichlet boundary conditions (hence the term “kinematically admissible”) because tf
solutionu; does. We can write the total energy associated with any of these possibl

solutions via

1
P(u, +ew. ) = Q(J;(u(ij )+.sw(ij ))Cujkl (”(k,l )+€W(k,| ))dQ

1.96
— [(u; +ew )f; dQ— [ (u; +ew, )t; dr (1.96)
> r

o

We now note that if the potential energy associated wyith IS to be lower than that o
other possible solution; +e&w. , then the derivativd’¢ti, +ew: ) with respect to
e = 0 (i.e., at the solutiom; ) should be zero for anysatisfyingconditions(1.82)

sinceu; is an extremum point of the functlnComputing this derivative of (1.96) and
setting the result equal to zero yields

Wi i )Gk Uk, )dQ
dl  pu +ew) = | = 0, (1.97)
Q (6)
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which must hold for allv,  satisfying the boundary conditiofgn . Equati®Y)can
be manipulated further by noting that

w,. . C. u =W, . C. E
(ij )kl (k,1) ] (ij )kl i Kl | (1.98)
= Wiy =W Ty

The last equality in (1.98), while perhaps not intuitively obvious, holds because of th
symmetry ofT i

1
Wi )T =3 *W T,

1 . (1.99)
= oW Ty *wy Ty )
= Wi Ty
Use of (1.98) in1.97)yields
fwi; Ty dQ—IWifidQ—IWit_idr:Q (1.100)
Q Q I

(o)

which is seen to be nothing more than the indicial notation counterfaro8j
Summarizing, we see that the weak or integral form of the governing equations deve
previously can be interpreted as a statement of the principle of minimum potential er

It is because of this alternative viewpoint that the weighting functons are sometir
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called variations or virtual displacements, with the terminology used often dependin
upon the mathematical and physical arguments used to develop the weak form.

Despite the usefulness of this physical interpretation, it should be noted that the pre:
of an energy principle is somewhat specific to the case at hand and may be difficult
impossible to deduce for many of the nonlinear systems to be considered in our later
For example, many systems are not conservative, including those featuring inelastic
at best our thermodynamic understanding must be expanded if we insist on formulal
such problems in terms of energy principles. Thus while the energy interpretation is
enlightening for many systems, including those featuring elastic continuum and/or
structural response, insistence on this approach for more general applications of
variational methods can be quite limiting. It is noteworthy, for example, that the derive
given in Eqs(1.83)(1.90)depended in no way upon the system being conservative ol
even upon the form of the constitutive equation used. We will exploit the generality of
weighted residual derivation as we increase the level of nonlinearity and complexity i
chapters to come.
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Fully Dynamic Case

Another advantage of the weighted residual approach is that it can be straightforwar
applied to dynamic problems. Before examining the dynamic case in detail, whose

development parallels that of quasistatic problems, it is worthwhile to emphasize aga
definitions of the weighting and solution spaces and to highlight the differences betw

them. Examining the definition &,  (4.91)and that oiVin (1.92) we see thab,

depends oh through the boundary conditions by , wiWes independent of time. We

retain these definitions in the current cas, and pose the following problem correspon
to the elastodynamic system posed in the last section:

Giventhe boundary conditions dn, x(0,T) aod bpx (0, T) , the initial
conditionsu, and/, oQ , and the distributed body féram Q x (0, T) , find the
ulS; foreachtime (0, T) such that:

2
J’pWDa—ude+I(DW):TdQ = [wCTda+ fwEar (1.101)
Q ot Q Q 5

for all w W, whereS is as defined i{1.91) Wis as defined 1G1.92) and where the
Cauchy stres$ is given by

T = C:(0O.u). (1.102)
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In addition, the solution is subject to the following conditionstat= 0

J’WE(u(O)—uO)dQ =0 (1.103)
Q

and

[w Eg_‘tJ(O) ~vfda = o, (1.104)

both of which must hold for alv [0 W .

The integral form of the dynamic equations give(ilii01)is obtained just as was done ir
the quasistatic case, by taking the dynamic governing partial differential egiatan
and multiplying it by a weighting function, integrating over the body, and applying
integration by parts to the stress divergence term. The new ingredients in the curren
specification are the initial conditions summarized by Egs. (1.103) and (1.104) but sl
be recognized by the reader as simple weighted residual expressions of the strong f
the initial conditions given in Eq§l.75)and(1.76)

Before leaving this section, we reemphasize the fact that the weighting functions are
independent while the solution spaces remain time dependent. This fact will have
iImportant consequences later when numerical algorithms are discussed because, In
we will wish to use the same classes of functions in our discrete representatiarsdof

S, . These discretizations will involve spatial approximation, which in the c&Se of
leave the time variable continuous in the discrete unknowns of the system to be solv
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Introduction

In this section we extend our discussion of the linear elastic problem to accommodat
important features: potentially large motions and deformations, and nonlinear maters
response. We will do this by introducing a more general notational framework in whicl
will work throughout the text and then by examining in a fairly nonrigorous fashion ht
provided certain concepts are kept in mind, the equations governing large deformati
initial/boundary value problems are similar in form to their familiar counterparts from
small deformation theory. Rigorous prescription and understanding of large deforma
problems can only be achieved through a careful examination of the concepts of non
continuum mechanics, which will be the concern of the next chapter.
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Notational Framework

The basic system we wish to consider is depicted schematically in Figure 1.7. We col
a body, initially in a location denoted Y , undergoing a time-dependent ngotion 1

describes its trajectory through the ambient space (assumed her@ o be )T he se
called thereference configurationand can be thought of as consisting of paxitlat
serve as labels for the material points existing at their respective locations.

XQ

[

Figure 1.7 Notation for large deformation initial/lboundary value problems.
For this reason the coordinatesre often calledeferenceor material coordinates We
assume, as before, that the surfa@ Qof can be decomposed intolsybsets , a

obeying restriction§l.52) The general interpretation of these surfaces remains the se
traction boundary conditions will be imposedlon , and displacement boundary
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conditions will be imposed oin,, . Full specification of these boundary conditions mu:
deferred, however, until some continuum mechanical preliminaries are discussed.

We have mentioned that the motipn is, in general, time dependent. In fact, we cou
write this fact in mathematical terms @ x (0, T) - 0° . If we fix the time argume

of ¢, we obtain @onfiguration mapping ¢, , summarized ad, Q- 0° , Which gives

us the location of the body at time given the reference configuratioh . Coordinates
the current locatiop, (Q) of the body will be denotedxby

The current location is often called thegatial configuration and the coordinateg,
spatial coordinates Given a material poilX J Q  and a configuration mapgipng , w

may write
X = ¢, (X). (1.105)

A key decision in writing the equations of motion for this system is whether to expres
equationsinterms ok JQ  or 0 ¢, (Q)
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Lagrangian and Eulerian Descriptions

The choice of whether to use reference coordinétes or spatial coordinates in th
problem description is generally highly dependent on the physical system to be stud
For example, suppose we wish to write the equations of motion for a gas flowing thro
duct or for a fluid flowing through a nozzle. In these cases the physical region of inte
(the control volume bounded by the duct or nozzle) is fixed and does not depend on
solution or time.

It could also be observed that identification of individual particle trajectories in such

problems is probably not of primary interest, with such quantities as pressure, veloci
temperature, and so forth at particular locations in the flow field being more desirabl
such problems it is generally most appropriate to associate field variables and equal

with spatial points or in the current notation, pots . A system described in this ma
Is said to be utilizing thEulerian description and implicitly associates all field variable:

and equations with spatial points  without specific regard for the material oints
involved in the flow of the problem. Most fluid and gas dynamics problems are written
way, as are problems in hydrodynamics and some problems in solid mechanics invo
fully developed plastic flow.

When thinking of Eulerian coordinate systems, it is sometimes useful to invoke the
analogy of watching an event through a window: the window represents the Euleriar
frame and has our coordinate system attached to it. Particles pass through our field c
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thereby defining a flow, but we describe this flow from the frame of reference of our
window without specific reference to the particles undergoing the motion we observe

In most solid mechanics applications, by contrast, the identity of specific material par
Is of central interest in modeling a system. For example, the plastic response of met
history dependent, meaning that the current relationship between stress and strain ¢
point in the medium depends on the deformation history associated with that materi:
point. To use such models effectively requires knowledge of the history of individual

particles, or material points, throughout a deformation process. Furthermore, many

physical processes we wish to describe do not lend themselves to an invariant Eulel
frame: in a forging process, for example, the metal at the end of the procedure occu
very different region in space than it did at the outset. For these and other reasons,
predominant approach to solid mechanics systems is to write all equations in terms

material coordinates or to use thegrangian frame of reference.

Returning to the notation summarizedHigure 1.7, we associate all field variables and

equations with pointX 1 Q and keep track of these reference particles throughout
process. One may note, in the last subsection, a bias toward this approach already; r

we have written the primary unknown in the problgm ( ) as a functig of2 and
t 00, T).
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Governing Equations in the Spatial Frame

With the above discussion as background, we turn now to the equations of motion
governing the motion of a medium. Interestingly if we adopt for the moment the spat
frame as our frame of reference, the form of these equations is largely unchanged frc

linear elastic case presented previously. Let us fix our attention on some fir(@ T)
and consider the current location (unfortunately unknown to us) of the(body . Ovel
region¢, (Q) , the following conditions must hold:

OOr+f = paong¢, (Q), (1.106)
o, = ¢, ond, (), (1.107)
and
t =t on¢, (), (1.108)
subject, of course, also to initial conditiondat 0 . Some explanation of these

equations is necessary. The nabla opefdtor in (1.106) is to be interpreted as beint
respect to spatial coordinates

The acceleratiom is referred to spatial coordinates but is the (material) acceleratio
the particle currently at arﬁ IS to be interpreted as a given or prescribed locatic

particles on the Dirichlet boundary. We leave the constitutive law govefning unspec
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at this point but remark that, in general, the stress must depend on  through apprec

strain/displacement and stress/strain relations. What we see froigl 2§§.)through
(1.108)is that the equations of motion are easily written in the form inherited from th
kinematically linear case but that the frame in which this is done, the spatial frame, i

independent of the unknown fiefq but relies upon it for its own definition.

Thus although the equations we now consider are essentially identical in form to tha
from linear elasticity, they possess a considerably more complex relationship to the
dependent variable. As will be provided in the next chapter, full and rigorous specific:
of this more general boundary value problem requires an in-depth treatment of the
continuum mechanics of large deformations.

Before leaving this topic, an item that frequently causes confusion should be addres
Although we have written the governing equationglii06)through(1.108)in terms of
the spatial domain, this does not imply an Eulerian statement of the problem at hanc

fact, if we choose (as we have done) to consider our dependent variable (in tihis cas;

to be a function of reference coordinates, the framework we choose is inherently
Lagrangian. Another way of saying this is that Ejsl06}(1.108)are the Lagrangian
equations of motion which have been converted through a change-of-variables so th:
are written in terms af . In the remainder of this text, the reader should assume a
Lagrangian framework unless otherwise noted.
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