SAND90-0247 Distribution
Unlimited Release Category UC-805
Printed May 1990

(Translation needs work)

SUPES Version 2.1
A Software Utility Package for the
Engineering Sciences

John R. Red-Horse
Applied Mechanics Division IV
Sandia National Laboratories
Albuguerque, New Mexico 87185

William C. Mills-Curran
Dennis P. Flanagén

Abstract

The Software Utilities Package for the Engineering Sciences (SUPES) is a col-
lection of subprograms which perform frequently used non-numerical services
for the engineering applications programmer. The three functional categories
of SUPES are: (1) input command parsing, (2) dynamic memory management,
and (3) system dependent utilities. The subprograms in categories one and two
are written in standard FORTRAN-77, while the subprograms in category three
are written to provide a standardized FORTRAN interface to several system
dependent features.

* Currently employed by Hibbitt, Karlsson & Sorenson, Inc., 100 Medway St., Providence, Rl
T Currently employed by Hibbitt, Karlsson & Sorenson, Inc., 100 Medway St., Providence, RI

Intentionally Left Blank

Table of Contents

1 INTRODUCTION . .. e S

2 INSTALLATION PROCEDURE 7

2.1

2.2

VAX/VMS Installation Procedure 7
2.1.1 Building SUPES 7
2.1.2 Buildingthe TestPrograms, 7
2.1.3 Installing SUPES On Your VMS System 8
General UNIX Installation Procedure 8
2.2.1 Building SUPES 8
2.2.2 Buildingthe TestPrograms 9
2.2.3 Installing SUPES On Your UNIX System 9

3 FREE FIELD INPUT . .. e 11

3.1
3.2
3.3

3.4

Keyword/Value Input System i 11
Syntax RUIES 12
Free Field Input Routines 13
3.3.1 External Input Routine (FREFLD) 13
3.3.2 Internal Input Routine (FFISTR) 15
3.33 BasicExamples 16
Utility ROULINES e e 17
3.4.1 GetlLiteral Input Line (GETINP) 17
3.4.2 Strip Leading/Trailing Blanks (STRIPB) 18
3.4.3 Process Quoted String (QUOTED) 19

4 MEMORY MANAGER 21

4.1
4.2

4.3

Indexing System e 21
BasSiC ROULINES 22
4.2.1 |Initialize (MDINIT/MCINIT) e 22
4.2.2 Define Dynamic Array (MDRSRV/MCRSRV) 23
4.2.3 Delete Dynamic Array (MDDEL/MCDEL) 23
4.2.4 Reserve Memory Block (MDGET/MCGET) 23
4.2.5 Release Unallocated Memory (MDGIVE/MCGIVE) 24
4.2.6 Obtain Statistics (MDSTAT/MCSTAT) 24
4.2.7 Print Error Summary (MDEROR/MCEROR) 24
4.2.8 Enable data initialization (MDFILL/MCFILL) 25
4.2.9 Cancel Data Initialization (MDFOFF/MCFOFF) 26
4.2.10 BasicExample 26
Advanced ROULINES 26
4.3.1 Rename Dynamic Array (MDNAME/MCNAME) 26
4.3.2 Adjust Dynamic Array Length (MDLONG/MCLONG) 27
4.3.3 Locate Dynamic Array (MDFIND/MCFIND) 27
4.3.4 Compress Storage (MDCOMP/MCCOMP) 27
4.3.5 Error Flag Query (MDERPT/MCERPT) 28
4.3.6 Modify Error Count (MDEFIX/MCEFIX) 28

4.3.8 Enable Deferred Memory Mode (MDWAIT/MCWAIT) 28
4.3.9 Execute Deferred Memory Requests (MDEXEC/MCEXEC) 29
4.3.10 Report storage information (MDMEMS/MCMEMS) 29
4.4 Development Aids 30
4.4.1 List Storage Tables (MDLIST/MCLIST) 30
4.4.2 Print Dynamic Array (MDPRNT/MCPRNT) 30
4.4.3 Debug Printing (MDDEBG/MCDEBG) 30
5 EXTENSION LIBRARY e 33
5.1 Userinterface ROULINES i e 34
5.1.1 GetToday's Date (EXDATE), 34
5.1.2 GetTimeofDay (EXTIME) 35
5.1.3 Get Accumulated Processor Time (EXCPUS) 35
5.1.4 Get Operating Environment Parameters (EXPARM) 35
5.1.5 Get Unit File Name or Symbol Value (EXNAME) 36
5.2 Utility Support Routines e 36
5.2.1 Convert String to Uppercase (EXUPCS) 36
5.2.2 Prompt/Read/Echo Input Record (EXREAD) 36
5.2.3 Evaluate Numeric Storage Location (IXLNUM) 37
5.2.4 Evaluate Character Storage Location (IXLCHR) 37
5.2.5 Get/Release Memory Block (EXMEMY) 37
5.3 Skeleton Library 37
5.3.1 Skeleton Routine Specifications 38
6 SUPPORT PROGRAMMER'SGUIDE 39
6.1 Free Field Input 39
6.1.1 Implementation Noteson FREFLD 39
6.1.2 TestProgramfor FREFLD 40
6.2 Memory Managert 41
6.2.1 Table Architecture and Maintenance 41
6.2.2 Non-ANSI FORTRAN Assumptions 42
6.2.3 Standard FORTRAN Implementation 42
6.2.4 Test Program 42
6.3 Extension Library Implementation 43
6.3.1 Implementation NotesforModules 44
6.3.2 Extension Library TestProgram 46
6.4 Installation Documentation Guidelines 46
7 References 49
8 SITE SUPPLEMENTS e 51

4.3.7 Report Last Error (MDLAST/MCLAST) 28

1 INTRODUCTION

The Software Utilities Package for the Engineering Sciences (SUPES) is a collection of
subprograms which perform frequently used non-numerical services for the engineering
applications programmer. The three functional categories of SUPES are: (1) input com-
mand parsing, (2) dynamic memory management, and (3) system dependent utilities. The
subprograms in categories one and two are written in standard FORTRAMAIE the
subprograms in category three are written in the C programming language. Thus providing
a standardized FORTRAN interface to several system dependent features across a variety
of hardware configurations while using a single set of source files. This feature can be
viewed as a maintenance aid from several perspectives. Among these are: there is only one
set of source files to account for, it allows one to standardize the build procedure, and it
provides a clearer starting point for any future ports. In fact, a build procedure is now part
of the standard SUPES distribution and is documented in Chapter 2 . Further, the system
dependent modules set an appropriate template for the porting of SUPES to other hard-
ware and/or software configurations.

Applications programmers face many similar user and system interface problems during
code development. Because ANSI standard FORTRAN does not address many of these
problems, each programmer solves these problems for his/her own code. SUPES aids the
programmer by:

* Providing a library of useful subprograms.
* Defining a standard interface format for common utilities.

* Providing a single point for debugging of common utilities. That is, SUPES has
to be debugged only once and then is ready for use by any code.

Use of SUPES by the applications programmer can expand a code’s capability, reduce
errors, minimize support effort and reduce development time. Because SUPES was
designed to be reliable and supportable, there are some features that are not included. (1) It
is not extremely sophisticated, rather it is reliable and maintainable. (2) Except for the
extension library (Chapter 5), it is not system dependent. (3) It does not take advantage of
extended system capabilities since they may not be available on a wide range of operating
systems. (4) It is not written to maximize cpu speed.

It is the intention of the authors to maintain SUPES on all scientific computer systems
commonly used by Engineering Sciences Directorate (1500) staff. Currently these systems
include:

1. Sun 3 and Sun 4 running SunOS operating system version 4.0.3 and later,
2. VAXen running VMS version 4.5 and later,

3. Cray X/MP and Y/MP running UNICOS version 5.0 and later, and

4. Alliant F/X 8 running Concentrix 5.0.0.

A notable omission to the above list is the Cray running either CTSS or the COS operating
systems. These configurations still require the FORTRAN source code for the extension
library that was provided in previous implementations of SUPES [SUPES]. This code
continues to be included in the current standard SUPES distribution, though a build
procedure designed for these systems is not. Specific ports of the SUPES utilities to new
machines and/or operating systems will be added to the original source files as the need
arises. Other Sandia personnel may obtain copies of SUPES from the authors. SUPES will
also be available to non-Sandia personnel through the National Energy Software Center.

2 INSTALLATION PROCEDURE

SUPES now contains a codified procedure for installing it as a part of the standard distri-
bution.

2.1 VAX/VMS Installation Procedure

2.1.1 Building SUPES

Under normal conditions, the VMS version of the SUPES distribution will come in the
form of a BACKUP savese§UPES2 1.BCK The installer should set the default direc-
tory to a suitable place and unbundle the saveset as follows:

$ BACKUP SUPES2_1.BCK/SAVESET []

Then, set default tpSUPES2_1.BUILD] , and execute the build procedure by entering
the command:

$ @BUILD_VMS

and wait for the build to be performed. You will be prompted for a message to include in
an update file JPDATE.QA. Do this by entering a message between a pair of double
guotes (") followed by a carriage retur&CR> The library will be built as
SUPES2_1.0LB in the[.BUILD] directory. IMPORTANT!! Version 2.3 of VAX C
running v4.5 of VMS exhibits a strange bug: when compiling the module
[.EXT_LIB.PORTABLE]JEXDATE.C inthe command proceduBJILD VMS.COMt
doesn't find one of the “header” modules and bombs with an error. The net result is that
you will have to copy this one to the build directory yourself, compile it @thand add

it to the library. Here are the commands to do that:

$ COPY [-.EXT_LIB.PORTABLE]EXDATE.C[] !from the build subdirectory

$ CC EXDATE
$ LIBRARY/REPLACE/LOG SUPES2_1 EXDATE

2.1.2 Building the Test Programs

Once you have done the installation, there is a set of test procedures that exercise each of
the SUPES capabilities separately. They are located in the top-level directory and are
namedEXTTEST.F, MEMTEST.FandFFRTEST.F . To build these, use the command
procedureBUILD_TESTS.COM, which is invoked with:

$ @BUILD_TESTS

Once you have done this step, each of the test procedures will be available for use in the
[.BUILD] subdirectory. To use any one of them refer to the proper section in Chapter
[Ref: sec:support] as well as to a file titl&@UJTPUT.LIS located in the individual
subdirectorieqd,EXT_LIB] ,[.FRE_FLD] , or[. MEM_MGR]. Finally, you can refer to

the source files for the test procedures themselves.

2.1.3 Installing SUPES On Your VMS System

As a last step, install the SUPES library on your VMS system. This is done by running the
command procedur&MSINSTALL.COM. It should copy the the library to the directory
of your choice, and set up the required logicals. Some things to note:

1. To perform the operations in ti@ISINSTALL.COMcommand procedure, you will
be required to have SYSTEM privileges.

2. You may want to have your system manager look at this file and insert some sections
of it in a system startup command procedure. Otherwise, the appropriate definitions
will be lost when the system is rebooted.

3. If you don’t have the required privileges, you should ¥MSINSTALL.COMo
remove any qualifier that requires them and invoke this newly created version in your
LOGIN.COM This will set up the logical names in your process name table and allow
you to use SUPES as described in this manual.

2.2 General UNIX Installation Procedure

2.2.1 Building SUPES

The general build scheme for all of the UNIX derived operating systems will be done
through themake utility. This procedure should help the maintainer deal with any
upgrades, bug fixes, etc. The distribution itself will generally be distributed as taNIX

file namedsupes2_1.tar . To install SUPES, go to the directory that you want to have

as a parent of the SUPES tree and unbundle the distribution. In the example below, the
directory/ustr/local has been arbitrarily chosen as this parent—individual sites have
the option of choosing a different location, depending on their conventions. An example of
the required command sequence follows [Footnote: Here, and throughout the remainder of
this manual, the UN*X interaction will be documented as follows: the user prompt will be
\%, comments will be offset by-- , and the text in between will denote the user supplied
commands.] :

% cd /usr/local <-- “/usr/local” will contain the distribution.
% tar xf supes2_1.tar <-- Ifyou get your distribution via tape, mantar.
% cd supes2_1

You will now be in the top-level directory of the distribution; each directory reference from
this point onward will be made relative to this directory. If a makefile exists for your system
named makefile.$(ARCH) in any of the source directoriesfext_lib/

portable , ./fre_fld , or./mem_mgr then a machine specific makefile has been
written. For example, under UNICOS, the filrakefile.unico exists in ./
mem_mgr so in order to do the build for that system one would need to perform the
following command:

% make ARCH=.unico

from the supes2_1 directory and the build will proceed. At this point, you will be
prompted for a message to add to the update @ifElgte.qa in the ./build
subdirectory). Conclude this message witlDa(i.e., input a D’ while holding down the

Control key simultaneously) at the beginning of a line. The sequence will look something
like this:

% Enter Message for Update File (./build/update.qa).

% End with a CNTL-D On A New Line.

% Initial UNICOS build. <---/ Lines input by user
% "D <--/

The archived library, titletlbsupes.a , will be built in the “/build " subdirectory.

There are a couple of things to note: the “.” in the almake statementS significant!!!!
Further, the file name has a suffix “unico” due to the fact that Cray UNICOS restricts file
names to be fewer than fifteen characters.

In the event that such a makefile dbE3T exist then one of two things is true. Either typing
the simple command:
% make

from thesupes2_1 directory will suffice, or an appropriate makefile does not exist. In

the former case you are done, while in the latter, the consequences are much greater. More
to the point, it probably means that the code will not run on your machine without
modification. If this is the case, you will need to port the C source files in the dirgctory
ext_lib/portable . Use the existing source as a guide and referencdREBADME

file in this directory.

2.2.2 Building the Test Programs

In most instances, once you have done the installation, you have also built the set of test
procedures that exercise each of the SUPES capabilities separately (cf. Chapter [Ref:
sec:support]). They are located in the top-leugbes2 1 directory and are named:
exttest , memtest , andffrtest . Look for them in the current directory. If they're

not there, then something has happened to prevent the test procedures from being built
after the actual build of the SUPES library and you will be required to build them manu-
ally. Doing this is a system dependent problem; here’s how you would go about building
exttest on the Alliant:

% fortran -o exttest exttest.f build/libsupes.a

Or, on the Cray under UNICOS with tb&77 compiler it’s:
% cf77 -0 exttest exttest.f build/libsupes.a

To use each of the programs, refer to the proper section in Chapter [Ref: sec:support] as
well as to the individual subdirectories for a file titledtput.lis and finally, refer to
the source files for the test procedures themselves.

2.2.3 Installing SUPES On Your UNIX System

As a last step, install the SUPES library in a suitable place on your UNIX system. To do
this, just enter the command

% make install

from thesupes2_1 directory. You should note that the proper permission will be required
to place the library in its final resting place (the defauliss/local/lib).

10

3 FREE FIELD INPUT

This chapter describes the free field input system supported in SUPES. This software was
developed because it was recognized that most codes written within the Engineering Sci-
ences Directorate have very similar command input requirements. The SUPES free field
input system consolidates the development and maintenance of command parsing code
into a single set of reliable software. This utility provides a uniform command syntax
across application codes to the end user, and minimizes the burden of command parsing
on the applications programmer.

The design requirements which are imposed on the SUPES free field input system are as
follows:

1. Input must follow a natural syntax which encourages readability.

2. The system must be applicable to both batch and interactive command input modes.
3. The software must be written in ANSI FORTRAN [ansi].
4.

The interface to the applications program must be clear and flexible.

Version 2 of the SUPES free field reader differs from version 1 in the following areas:

1. Aninterface has been provided to allow character strings to be input to the free field
reader in addition to reading from files. This allows the applications programmer to
perform more sophisticated string parsing than would be possible when reading only
from a file.

2. Whole, real numbers (e.g., 12.3E3) will translate to both INTEGER and REAL values
if the absolute value of the number is not greater than 1.0E9.

3. Quoted strings are allowed. This makes the free field reader more compatible with the
standard FORTRAN free field input. No interpretation of characters (except for
internal quotes) is performed within a quoted string.

3.1 Keyword/Value Input System

This section describes the basic characteristics of the SUPES free field input system.
SUPES addresses the first two phases of command processing; it obtains a record from the
input stream, and parses the record into logical components. Interpretation of the data in
the final phase of command processing is left to the applications program.

SUPES provides a keyword/value input structure which encourages a verb oriented
command language. The hallmark of this input style is the concept of “verbs” (or
“keywords”) which indicate how a command is to be interpreted. Since keywords allow
each command to be self-contained, input lines need not follow a rigid order. This results
in highly readable input data. For example, the command “YOUNGS MODULUS =
30.E6” has a very clear meaning. The verb oriented style can be contrasted with standard

11

FORTRAN list-directed I/O which requires the application code to know precisely what to
expect before reading a line of input.

The SUPES free field input system has a very simple, yet versatile syntax. Input records
are broken into “fields”. Each field is categorized according to its contents as: null,
character, real, or integer. Note that these four categories form a hierarchy where each
subsequent category is a more specific subset of the previous one. For example,
“5.2345E3" is a real field because it can be interpreted as a REAL value as well as a valid
CHARACTER string, but does not constitute a valid INTEGER format.

There are just four syntax markers in SUPES: field separators which delimit data fields, a
guote character which encloses literal strings, a comment indicator which allows a

comment to be appended to command lines, and a continuation indicator which causes
consecutive input records to be logically joined.

An application program need not use all of the information returned for each field. A
default value (blank or zero) is returned when a valid value is not specified for a given field.
On the other hand, the application code can easily detect that the user has not explicitly
specified a value so that a more meaningful default can be assumed, or so that the user can
be prompted to supply more information.

3.2 Syntax Rules

The syntax rules for the SUPES free field input structure are listed below. This syntax
describes how input records/strings are parsed into data fields. Both the end user and the
applications programmer should clearly understand these few rules.

1. A data field is any sequence of data characters within an input line. A data field is
broken by (does not include) any non-data character or the end of the input line. A non-
data character is a field separator, a space, a comment indicator, or a continuation
indicator. Any other character is a data character.

2. Afield separator is a comma (,), an equal sign (=), or a series of one or more spaces
not adjacent to another separator.

3. Adollar sign ($) indicates a comment. All characters after and including the comment
indicator are ignored.

4. An asterisk (*) indicates that the next input record/string will be treated as a
continuation of the current line. All characters after and including the continuation
indicator on the current line are ignored. Multple records/strings that are ”joined” by
continuation indicators are treated as a single logical record.

5. Anull field does not contain any data characters. A null field can be defined explicitly
only by a field separator (spaces cannot act as a field separator for an explicit null
field). Fields which are not defined on the input line are implicitly null.

6. Lowercase letters not contained in a quoted string are converted to uppercase. All
other non-printable ASCII characters are converted to spaces.

12

7. A numeric field is a data field which adheres to an ANSI FORTRAN numeric format.
A numeric field cannot be longer than 32 characters. A numeric field always defines a
REAL (floating point) value; it also defines an INTEGER (fixed point) value if it
adheres to a legal INTEGER format.

8. A quoted string is a data field in which the quote (') character is the first nonblank
character. An internal quote is indicated with 2 consecutive quote characters. If an end
guote character is not included, then the remainder of the record (excluding any
trailing blanks) is treated as part of the quoted string. Within a quoted string, no
character conversion to uppercase is performed. Delimiters (other than quotes) are
treated as part of the string. Interpretation of data to numeric data will be performed,
if possible.

9. A data field which does not begin with the quote character, but has a quote internal to
the field (e.g., MOM’S) is not considered a quoted string. In this case, the internal
guote is not a special character.

10. The maximum length of an input record (FREFLD only) is 132 characters. Input
strings to FFISTR may be any length.

Some important points which are not obvious from the above rules are noted below.
» Spaces have no significance except when they act a field separator.

* Only the first occurrence of a comment or continuation character is significant;
subsequent characters are considered part of the comment.

* A blank line has no data fields.

« If no data characters appear after the last field separator, the field after that sepa-
rator will not be counted.

3.3 Free Field Input Routines

The user interface to the SUPES free field input system consists of two subroutines: FRE-
FLD and FFISTR. Both routines perform parsing functions of strings. The main difference
is that FFREFLD gets its input from a FORTRAN I/O unit while FFISTR gets its input
from a character string. In fact, FREFLD uses FFISTR to perform parsing functions once
FREFLD has read a record.

3.3.1 External Input Routine (FREFLD)

Input is prompted for, read, and echoed via FREFLD using specified 1/0 units. FREFLD
returns the parsed data field values defined on the next input record and any continuation
records. All I/O is accomplished via the utility routine GETINP, which is documented fur-
ther in section [Ref: sec:getinp] , while the parsing is performed by FFISTR.

The arguments to FREFLD are prescribed below.

CALL FREFLD(KIN, KOUT, PROMPT, MFIELD, IOSTAT, NFIELD, KVALUE,
* CVALUE, IVALUE, RVALUE)

13

KININTEGERRead Only Unit from which to read input. If zero, read from the standard
input device (terminal or batch deck) and echo to the standard output device (terminal or
batch log). If non-zero, the caller is responsible for opening/closing this unit.

KOUTINTEGERRead Only Unit to which to echo input. If zero, do not echo other than to
the standard output device as described above. If non-zero, the caller is responsible for
opening/closing this unit.

PROMPTCHARACTERI\last (\last)JRead Only Prompt string. This string will be used to
prompt for data from an interactive terminal and/or will be written as a prefix to the input
line for echo. If the string ‘AUTO’ is specified, a prompt of the form ‘ n:’, where “n” is the
current input line number (only lines read under the AUTO feature are counted), will be
generated.

MFIELDINTEGERRead Only Maximum number of data fields to be returned. The
dimensions of each of the output arrays described below must be greater than of equal to
this number.

IOSTATINTEGERWTrite Only ANSI FORTRAN [/O status:

IOSTAT < 0 End of File
IOSTAT = 0 Normal
IOSTAT > 0 Error

NFIELDINTEGERWrite Only Number of data fields found on this logical record. If this
value is less than MFIELD, the excess fields are implicitly defined as null fields. If this
value is greater than MFIELD, the extra data fields are ignored.

KVALUEINTEGER ArrayWrite Only Translation states of the data fields. The value of
each element of this array is interpreted as follows:

KVALUE Meaning

-1 This is a null field.

0 This is a non-numeric field; only CVALUE contains a specified value.

1 This is a REAL numeric field; CVALUE and RVALUE contain specified values.

2 This is an INTEGER numeric field; CVALUE, RVALUE, and IVALUE contain specified
values.

The dimension of this array must be at least MFIELD.

CVALUECHARACTER\last (\last) ArrayWrite Only Character values of the data fields.
The data will be left-justified and either blank-filled or truncated. The value in this array is
set blank for a null field. The dimension of this array must be at least MFIELD. The
character element size may be any value set by the caller.

14

IVALUEINTEGER ArrayWrite Only Integer values of the data fields. The value in this
array is set to zero for a null or non-INTEGER field. The dimension of this array must be
at least MFIELD.

RVALUEREAL ArrayWrite Only Floating-point values of the data fields. The value in this
array is set to zero for a null or non-REAL field. The dimension of this array must be at
least MFIELD.

3.3.2 Internal Input Routine (FFISTR)

Internal input (i.e., a character string) is parsed via FFISTR using character strings sup-
plied through FFISTR’s argument list. FFISTR returns the parsed data field values defined
in the input string. If a string contains a continuation character, a flag is returned to the
user indicating that another string should be supplied to complete the logical record. The
arguments to FFISTR are prescribed below.

CALL FFISTR(LINE, MFIELD, IDCONT, NFIELD, KVALUE,
* CVALUE, IVALUE, RVALUE)

LINECHARACTER\last (\last)Read Only Input string. This argument contains the data to
be parsed.

MFIELDINTEGERRead Only Maximum number of data fields to be returned. The
dimensions of each of the output arrays described below must be greater than of equal to
this number.

IDCONTINTEGERRead and Write Continuation flag. 0 means no continuation. On input,
this flag indicates if the previous string contained a continuation indicator. In this case, the
current string will be treated as part of the same logical record as the previous string.

NFIELDINTEGERWrTrite Only Number of data fields found on this logical record. If this
value is less than MFIELD, the excess fields are implicitly defined as null fields. If this
value is greater than MFIELD, the extra data fields are ignored.

KVALUEINTEGER ArrayWrite Only Translation states of the data fields. The value of
each element of this array is interpreted as follows:

KVALUE Meaning

-1 This is a null field.

0 This is a non-numeric field; only CVALUE contains a specified value.

1 This is a REAL numeric field; CVALUE and RVALUE contain specified values.

2 This is an INTEGER numeric field; CVALUE, RVALUE, and IVALUE contain specified
values.

The dimension of this array must be at least MFIELD.

CVALUECHARACTER\last (\last) ArrayWrite Only Character values of the data fields.
The data will be left-justified and either blank-filled or truncated. The value in this array is

15

set blank for a null field. The dimension of this array must be at least MFIELD. The
character element size may be any value set by the caller.

IVALUEINTEGER ArrayWrite Only Integer values of the data fields. The value in this
array is set to zero for a null or non-INTEGER field. The dimension of this array must be
at least MFIELD.

RVALUEREAL ArrayWrite Only Floating-point values of the data fields. The value in this
array is set to zero for a null or non-REAL field. The dimension of this array must be at
least MFIELD.

3.3.3 Basic Examples
The following examples illustrate the operation of the SUPES free field input system.

INPUT RECORDS:

verb, 1 2. * continue on next line
key=5

Results returned from FREFLD: NFIELD =5
KVALUE(]) CVALUE()) RVALUE(I) IVALUE(I)

I

1 0 VERB 0.000E+00 0
2 2 1 1.00 1
3 2 2. 2.00 2
4 0 KEY 0.000E+00 0
5 2 5 5.00 5

INPUT RECORD:
$ this is a comment line

Results returned from FREFLD: NFIELD =0
KVALUE(I) CVALUE()) RVALUE(]) IVALUE(I)

I

1 -1 0.000E+00 0
2 1 0.000E+00 0
3 -1 0.000E+00 O
4 -1 0.000E+00 0
5 1 0.000E+00 0

INPUT RECORD:
10,,

Results returned from FREFLD: NFIELD =2
| KVALUE(l) CVALUE(I) RVALUE(l) IVALUE(l)

16

1 2 10 10.0 10
2 -1 0.000E+00 0
3 -1 0.000E+00 O
4 -1 0.000E+00 0
5 -1 0.000E+00 0

INPUT RECORD:
'Quoted strings’, '5 7, '$*,=""" $ rest is comment

Results returned from FREFLD: NFIELD =3
KVALUE(l) CVALUE(I) RVALUE(l) IVALUE(l)

I

1 0 Quoted_strings 0.000E+00 0
2 2 5 50.0 50
3 0 $* =" 0.000E+00 0
4 0.000E+00 0
5 0.000E+00 0

INPUT RECORD:
quotes’s

Results returned from FREFLD: NFIELD =1
KVALUE(]) CVALUE()) RVALUE(l) IVALUE(I)

I

1 0 QUOTES'’S 0.000E+00 0
2 -1 0.000E+00 0
3 -1 0.000E+00 0
4 -1 0.000E+00 0
5 -1 0.000E+00 O

3.4 Utility Routines

The three routines described in this section, together with the FORTRAN extension library
routines EXREAD and EXUPCS, are the only externals called by FREFLD and FFISTR.
Application programs built on top of FREFLD and FFISTR may find further use for these

routines.

3.4.1 Get Literal Input Line (GETINP)

All 1/0 for FREFLD is done through this subroutine. This routine was intentionally sepa-
rated from FREFLD so that the caller can obtain an unmodified line of input (such as a
problem title) via the same 1/O stream. Applications which require a more complex syntax
than SUPES provides (e.g., algebraic operations) may find GETINP advantageous.

There are four modes of operation of GETINP depending upon the specification of the 1/0
units KIN and KOUT. Each of these modes, which are summarized in the following table,

may be useful to various applications.

17

KIN KOUT Source Echo

0 0 Standard Input Standard Output

0 M Standard Input Standard Output and File (M)
N M File (N) File (M)

N 0 File (N) none

The arguments to GETINP are prescribed below.
CALL GETINP(KIN, KOUT, PROMPT, LINE, IOSTAT)

KININTEGERRead Only Unit from which to read input. If zero, read from the standard
input device (terminal or batch deck) and echo to the standard output device (terminal or
batch log). non-zero, the caller is responsible for opening/closing this unit.

KOUTINTEGERRead Only Unit to which to echo input. If zero, do not echo other than to
the standard output device as described above. If non-zero, the caller is responsible for
opening/closing this unit.

PROMPTCHARACTERI\last (\last)Read Only Prompt string. This string will be used to
prompt for data from an interactive terminal and/or will be written as a prefix to the input
line for echo. If the string ‘AUTO'’ is specified, a prompt of the form ‘ n:’, where "n" is the
current input line number (only lines read under the AUTO feature are counted), will be
generated.

LINECHARACTER\last (\last)Write Only Line of input. This string will be blank-filled
or truncated, if necessary. The length of the string is set by the caller, but should not exceed
132.

IOSTATINTEGERWrite Only ANSI FORTRAN I/O status:

IOSTAT < 0 End of File
IOSTAT = 0 Normal
IOSTAT > 0 Error

3.4.2 Strip Leading/Trailing Blanks (STRIPB)

This routine is called by FREFLD and FFISTR from several locations. It may be useful to
other applications as well. Note that STRIPB does not modify nor copy the input string,
but simply returns the location of the first and last non- blank characters. If a substring is
passed, these locations are relative to the beginning of the substring. For example, if the
substring STRING(N:) is passed to STRIPB, STRING(ILEFT+N-1:IRIGHT+N-1) would
represent the result.

The arguments to STRIPB are prescribed below.

CALL STRIPB(STRING, ILEFT, IRIGHT)

18

STRINGCHARACTER\last (\last)Read Only Any character string.

ILEFTINTEGERWIrite Only Relative index of the first non-blank character in STRING.
ILEFT = LEN(STRING) + 1 if STRING =" ".

IRIGHTINTEGERWETrite Only Relative index of the last non-blank character in STRING.
IRIGHT =0 if STRING =",

3.4.3 Process Quoted String (QUOTED)

This routine is called by FFISTR to remove the delimiting quotes from a quoted string. It
also converts any repeated quotes into single quotes. (This is a common method for indi-
cating internal quotes.)

The arguments to QUOTED are prescribed below.
CALL QUOTED (STRING, ILEFT, IRIGHT)

STRINGCHARACTERI\last (\last)Read and Write Any character string. On output, the
first and last quotes are removed, and internal (repeated) quotes are converted to single
guotes. If the trailing quote is omitted, then the remainder of the input record (excluding
trailing blanks) is considered part of the quoted string.

ILEFTINTEGERWTrite Only Relative index of the first character in the string. This is
always the location of the first character inside the leading quote.

IRIGHTINTEGERWrite Only Relative index of the last character in STRING. IRIGHT =
0 if the quoted string is null.

19

Intentionally Left Blank

20

4 MEMORY MANAGER

The purpose of the memory manager utilities is to allow an applications programmer to
write standard, readable FORTRAN-77 code while employing dynamic memory manage-
ment for REAL, INTEGER, LOGICAL and CHARACTER type arrays.

Because the array sizes in most programs are problem dependent, a program’s memory
requirements are not known until the program is running. Since FORTRAN-77 does not
provide for dynamic memory allocation, the programmer has to either predict the
maximum memory requirement or use machine dependent requests for memory. In
addition, dynamic memory allocation is an error prone exercise which tends to make the
source code difficult to read and maintain.

In SUPES, the memory manager utilities are written in standard FORTRAN-77 and
provide an interface which encourages readable coding and efficient use of memory
resources. Machine dependencies are isolated through the use of the extension library
(Chapter [Ref: sec:extlib]). All memory requests are in ternmupferic storage unitr

numeric data (integer, real, or logical) artéiracter storage unit®r character data [ansi].

An important design feature of the memory manager is that the memory manager can be
supported even when the system-dependent dynamic memory request routines are not
implemented on a system. In this case, the memory manager will operate, allocating space
from a user-supplied work array. This mode is described as dynamic allocation of static
memory. Thus, modification of a user’s application program is minimal on systems where
dynamic memory is not implemented.

All user entry points to memory manager routines begin with either “MD” or “MC.” In

most cases, the “MD” routines are used for numeric data, while the “MC” routines are for
character data. In some cases, however, the routines are interchangeable. These routines are
documented as synonyms.

In this document, the term “Mx” is used to refer simultaneously to both “MD” and “MC”
routines. Thus, MXRSRYV is a reference to both MDRSRV and MCRSRYV subroutines.

The memory manager utility is divided into three categories; basic routines, advanced
routines, and development aids. These categories will be discussed in sections [Ref:
sec:mbas] through [Ref: sec:mdev] .

4.1 Indexing System

In order to use the memory manager properly, the user must first understand the concept of
using a base array with indices for accessing memory address locations. At the core of this
concept is FORTRAN'’s convention of passing SUBROUTINE array references by
address. The memory manager references all memory addresses relative to the addresses
of user-supplied base arrays—one each for numeric and character data. A reference to
memory is made in terms of a pointer to these base arrays. Specifically, the memory man-

21

ager determines an indexing parameter by first determining the offset of the appropriate
memory location relative to the address of the correct base array. The index is then com-
puted in terms of the proper storage units (either character or numeric). Note that the
resulting indexes may take on a wide range of values, including negative numbers.

The base arrays must comply with the following rules:

1. Numeric base arraysustbe of type INTEGER, REAL, or LOGICAL. Modified word length storage ar-
rays such as INTEGER\last 2 or REAL\last 8 will result in invalid indexes with no error message.

2. Character base arrayaistbe declared CHARACTER\last 1.

The following FORTRAN statements define valid base arrays:

DIMENSION NUMBAS(1)
CHARACTER*1 CHRBAS(1)

Only one base array from each category (humeric and character) may be used in a program.

In order to use memory allocated by the memory manager, the user merely needs to pass
the base array with the correct offsetting index to a subprogram. For example, for a base
arrays NUMBAS and CHRBAS and indexes IP1 and IP2, a subroutine call would be:

CALL SUBBIE (NUMBAS(IP1), CHRBAS(IP2))

Although the programmer is not restricted to using the allocated memory in subprograms
only, the recommended usage for the memory manager is to allocate dynamic arrays in the
main program and then pass them to subroutines.

4.2 Basic Routines

The basic memory manager routines are those which are most commonly used and require
little understanding of the internal workings of the utility.

4.2.1 |Initialize (MDINIT/MCINIT)

The memory managenustbe initialized with a calls to MDINIT and MCINIT before any
memory can be allocated. The main purpose of the initialization is to determine the loca-
tion of the numeric and character base arrays in memory. MDINIT must be called first,
and MCINIT second. In the case where character dynamic memory is not used, MCINIT
need not be called. When calling MxINIT, the user must pass (explicitly or implicitly)
subscript 1 of the base array.

CALL MDINIT (NUMBAS(1))
CALL MCINIT (CHRBAS(1))

NUMBASINTEGER, LOGICAL or REAL Array or Array ElementRead Only This array
is used as a base reference to all dynamically allocated numeric memory.

CHRBASCHARACTER\last 1 Array or Array ElementRead Only This array is used as a
base reference to all dynamically allocated character memory.

22

4.2.2 Define Dynamic Array (MDRSRV/MCRSRYV)

MxRSRV declares new dynamic arrays. The user specifies the space required, and an
index to the new space is returned. Note that, by default, the contents of the new storage
are not initialized to any specific value. MXFILL may be used for data initialization.

CALL MDRSRV (NAME, NEWIDX, NEWLEN)
CALL MCRSRV (NAME, NEWIDX, NEWLEN)

NAMECHARACTER\last (\last)Read Only This is the name of the new dynamic array.
The memory manager will add this name to its internal dictionary; each array must have a
unique name. The first eight characters beginning with a nonblank are used for comparison.
This comparison is case-insensitive and embedded blanks are significant.

NEWIDXINTEGERWrite Only This is the index to storage allocated to this dynamic array
relative to the base array. The index for numeric data is to be used with the numeric array
supplied to MDINIT, and character data is to be used with the character array supplied to
MCINIT.

NEWLENINTEGERRead Only This is the length to be reserved for the new array. Any
nonnegative number is acceptable. A zero length does not cause any storage to be allocated
and returns an index equal to one. The value of NEWLEN is in terms of numeric storage
units for numeric data and character storage units for character data.

4.2.3 Delete Dynamic Array (MDDEL/MCDEL)

MDDEL and MCDEL release the memory that is allocated to a dynamic array for numeric
and character storage, respectively.

CALL MDDEL (NAME)
CALL MCDEL (NAME)

NAMECHARACTER\last (\last)Read Only This is the name of the dynamic array which

is to be deleted. The array name must match an existing name in the dictionary and be of
the correct type (numeric or character) for the operation. The first eight characters
beginning with a nonblank are used for comparison. This comparison is case-insensitive
and embedded blanks are significant.

4.2.4 Reserve Memory Block (MDGET/MCGET)

MDGET and MCGET reserve a contiguous block of memory without associating the
block of memory with an array. MXGET should be called prior to a series of calls to
MxRSRYV to improve efficiency and to reduce memory fragmentation. Further discussion
of the operation of MXGET is found in section [Ref: sec:table] .

CALL MDGET (MNGET)
CALL MCGET (MNGET)

MNGETINTEGERRead only This specifies the desired contiguous block size in numeric
storage units for MDGET or character storage units for MCGET.

23

4.2.5 Release Unallocated Memory (MDGIVE/MCGIVE)

MxGIVE causes the memory manager to return unused storage to the operating system, if
possible. MDGIVE and MCGIVE are synonyms.

CALL MDGIVE ()
CALL MCGIVE ()

4.2.6 Obtain Statistics (MDSTAT/MCSTAT)

MxSTAT returns memory manager statistics. MXSTAT provides a method for error check-
ing, and thus should be used after other calls to the memory manager to assure no errors
have occurred. MDSTAT and MCSTAT are synonyms.

CALL MDSTAT (MNERRS, MNUSED)
CALL MCSTAT (MNERRS, MNUSED)

MNERRSINTEGERWTrite Only This is the total number of errors detected by the memory
manager during the current execution.

MNUSEDINTEGERWTrite Only This is the total number of storage units that are currently
allocated to dynamic arrays. MDSTAT returns the numeric storage in numeric storage
units, and MCSTAT returns the character storage in character storage units. If any storage
has been requested in the deferred mode and not yet allocated by the memory manager
(Section [Ref: sec:wait]), this storage is counted as though it were actually allocated.

4.2.7 Print Error Summary (MDEROR/MCEROR)

MXEROR prints a summary of all errors detected by the memory manager. The return sta-
tus of the last memory manager routine called is also printed. MXEROR should be called
any time an error is detected by a call to MXSTAT. Table 1 lists the error codes. MDEROR

and MCEROR are synonyms.

Several of the error codes listed in Table lare not a result of a user error, but are used to
signal an internal error, or that an internal array is full. For example, the table which records
the names of the arrays allocated with MXRSRV may not be large enough for the
application. In this case, the memory manager subroutines must be modified to
accommodate the user. A local support person should perform this task.

CALL MDEROR (IUNIT)
CALL MCEROR (IUNIT)

IUNITINTEGERRead Only This is the FORTRAN unit number of the output device.

Table 1. Memory Manager Error Codes

ERROR CODES

1 SUCCESSFUL COMPLETION
2 UNABLE TO GET REQUESTED SPACE FROM SYSTEM
3 DATA MANAGER NOT INITIALIZED

24

Table 1. Memory Manager Error Codes

ERROR CODES

DATA MANAGER WAS PREVIOUSLY INITIALIZED

NAME NOT FOUND IN DICTIONARY

NAME ALREADY EXISTS IN DICTIONARY

ILLEGAL LENGTH REQUEST

UNKNOWN DATA TYPE

Ol 0| N[O | O] &

*| DICTIONARY IS FULL

10 | *| VOID TABLE IS FULL

11 | *| MEMORY BLOCK TABLE IS FULL

12 | *| OVERLAPPING VOIDS - INTERNAL ERROR

13 | *| OVERLAPPING MEMORY BLOCKS - INTERNAL ERROR

14 | *| INVALID MEMORY BLOCK - EXTENSION LIBRARY ERROR

15 INVALID ERROR CODE

16 INVALID INPUT NAME

17 ILLEGAL CALL WHILE IN DEFER MODE

18 NAME IS OF WRONG TYPE FOR OPERATION

*These are not user errors

4.2.8 Enable data initialization (MDFILL/MCFILL)
MXFILL defines a fill/initialization pattern that is to be used for newly allocated storage.
MDFILL and MCFILL are in effect until canceled by MDFOFF and MCFOFF, respec-
tively. MDFILL and MCFILL operate independently.

CALL MDFILL (NUMDAT)
CALL MCFILL (CHRDAT)

NUMDATINTEGER, REAL or LOGICALRead Only This is the initialization datum for
new storage allocated with MDRSRYV or extended with MDLONG. The memory manager
makes no attempt to identify the type (INTEGER, REAL, or LOGICAL) of either the
initialization datum or of a newly allocated array. Instead, the bit of the initialization datum
is stored without interpretation. This pattern is then used to initialize new storage. Since the
internal machine representation of REAL data is different than INTEGER data (or
LOGICAL data), the user may experience unexpected results when dynamic memory is
used as a numeric type which is different from the type of the initialization datum.

CHRDATCHARACTER\last (\last)Read Only This is the initialization data for new

storage allocated with MCRSRYV or extended with MCLONG. Only the first character of
CHRDAT is used.

25

4.2.9 Cancel Data Initialization (MDFOFF/MCFOFF)

MDFOFF and MCFOFF cancel the data initialization for numeric and character data,
respectively. MDFOFF and MCFOFF operate independently.

CALL MDFOFF ()
CALL MCFOFF ()

4.2.10 Basic Example
DIMENSION BASE(1)
CHARACTER*1 CBASE(1)
CALL MDINIT (BASE(1))
CALL MCINIT (CBASE(1))
CALL MDGET (20)
CALL MDFILL (0.)
CALL MCFILL ('2)
CALL MDRSRYV (FIRST’, 11, 10)
CALL MDRSRV ('SECOND’, 12, 10)
CALL MCRSRYV ('THIRD’, 13, 10)
CALL MDDEL ('SECOND’)
CALL MDGIVE ()
CALL MDSTAT (MNERRS, MNUSED)
IF (MNERRS .NE. 0) THEN
CALL MDEROR (6)
STOP
END IF
CALL SUBPRG (BASE(I1), CBASE(I3))

4.3 Advanced Routines

The advanced routines are supplied to give added capability to the user who is interested
in more sophisticated manipulation of memory. These routines are never necessary, but
may be very desirable.

4.3.1 Rename Dynamic Array (MDNAME/MCNAME)

MxNAME renames a dynamic array from NAMEL to NAMEZ2. The location of the array
is not changed, nor is its length. MDNAME is used for numeric arrays and MCNAME is
used for character arrays.

CALL MDNAME (NAME1, NAME2)
CALL MCNAME (NAME1, NAME2)

NAME1CHARACTER\last (\last)Read Only This is the old name of the array. The first
eight characters after the first nonblank are used for comparison. This comparison is case-
insensitive and embedded blanks are significant.

NAME2CHARACTERI\last (\last)Read Only This is the new name of the array. The first

eight characters starting from a nonblank are used for the new name. This comparison is
case-insensitive and embedded blanks are significant.

26

4.3.2 Adjust Dynamic Array Length (MDLONG/MCLONG)

MxXLONG changes the length of a dynamic array. The memory manager will relocate the
array and move its data if storage cannot be extended at the array’s current location. The
user should assume that MXLONG invalidates the previous index to this array if the array
is extended. MDLONG is used for numeric arrays and MCLONG is used for character
arrays.

CALL MDLONG (NAME, NEWIDX, NEWLEN)
CALL MCLONG (NAME, NEWIDX, NEWLEN)

NAMECHARACTERI\last (\last)Read Only This is the name of the dynamic array which
the user wishes to extend or shorten.

NEWIDXINTEGERWrite Only This is the new index to the dynamic array.

NEWLENINTEGERRead Only This is the new length for the dynamic array in numeric
storage units for MDLONG and in character storage units for MCLONG.

4.3.3 Locate Dynamic Array (MDFIND/MCFIND)

MxFIND returns the index and length of storage allocated to a dynamic array. This routine
would be used if the index from an earlier call to MXRSRV was not available in a particu-
lar program segment. MDFIND is used for numeric arrays and MCFIND is used for char-
acter arrays.

CALL MDFIND (NAME, NEWIDX, NEWLEN)
CALL MCFIND (NAME, NEWIDX, NEWLEN)

NAMECHARACTER\last (\last)Read Only This is the name of the dynamic array to be
located.

NEWIDXINTEGERWrite Only This is the index to the dynamic array relative to the user’'s
reference array. Because an index can take any value, the returned value cannot be used as
an indication of success or failure of MXFIND. MxXSTAT should always be used for error
checking.

NEWLENINTEGERWrite Only This is the length of the dynamic array in numeric or
character storage units for MDFIND and MCFIND, respectively.

4.3.4 Compress Storage (MDCOMP/MCCOMP)

MxCOMP causes fragmented memory to be consolidated. Note that this may cause array
storage locations to change. It is important to realize that all indexes must be recalculated
by calling MxFIND after a compress operation. A call to MXCOMP prior to MXGIVE will
result in the return of the maximum memory to the system. MDCOMP and MCCOMP are
synonyms.

CALL MDCOMP ()
CALL MCCOMP ()

27

4.3.5 Error Flag Query (MDERPT/MCERPT)

MXERPT requests the memory manager to report the number of errors accumulated for a
particular error flag. A programmer may use this to determine more detailed information
than what is available from MxSTAT. MDERPT and MCERPT are synonyms.

CALL MDERPT (IFLAG, NERRS)
CALL MCERPT (IFLAG, NERRS)

IFLAGINTEGERRead Only IFLAG specifies the flag number for which the user wishes
an error count. A list of the error flags can be printed by calling MXEROR.

NERRSINTEGERWT rite Only NERSS will contain the error count.

4.3.6 Modify Error Count (MDEFIX/MCEFIX)
MXEFIX allows the error count for a particular error flag to be set to a specified value.
MDEFIX and MCEFIX are synonyms.

CALL MDEFIX (IFLAG, NERRS)
CALL MCEFIX (IFLAG, NERRS)

IFLAGINTEGERRead Only IFLAG specifies the number of the error flag which will be
set. See Table [Ref: tab:ecode] for a list and description of these flags.

NERRSINTEGERRead Only NERRS is the new value for the error count.

4.3.7 Report Last Error (MDLAST/MCLAST)

MXLAST requests the flag number of the last error. MDLAST and MCLAST are syn-
onyms.

CALL MDLAST (IFLAG)
CALL MCLAST (IFLAG)

IFLAGINTEGERWTrite Only IFLAG is the number of the last error caused by a previous
call to the memory manager.

4.3.8 Enable Deferred Memory Mode (MDWAIT/MCWAIT)

MXWAIT enables the deferred memory mode of the memory manager. In this mode, any
requests for additional memory with MXRSRV are satisfied only if a system call is not
required. If a system call is required, the request for memory is deferred and will be satis-
fied when the deferred mode is canceled by calling MXEXEC or a call to MXLONG
requires a system call for memory for an existing array. MDWAIT and MCWAIT are syn-
onyms.

Because the deferred mode may not actually provide array space at the time a call to
MxRSRYV is made, the base array pointer returned by MxRSRV may not be valid. In fact,
for a deferred request, an invalid index is intentionally returned so that the requested array
space cannot be erroneously used. When the deferred memory requests are eventually
satisfied (by calling MXEXEC), the indexes are automatically, asynchronously updated by

28

the memory manager. Thus, upon return from MXEXEC the indexes used in MXRSRV will
have a valid value.

The deferred mode is provided as a means of reducing the sometimes time-consuming calls
to the operating system for new memory. A similar efficiency could be realized by
judicious use of MXGET, but the deferred mode relieves the user of the burden of adding
all memory requests before calling MXRSRV. The deferred mode is a sophisticated
capability and should not be enabled if the user does not understand its implications.

The deferred mode must be used as follows:
1. The deferred mode begins with a call to MXWAIT.
2. Except for MXPRNT, all memory manager calls are permissible in the deferred mode.

3. Indexes returned by MxRSRV, MXFIND, and MXLONG may not be assigned to other variables while the
deferred mode is in effect.

4. Dynamic memory may not be accessed while the deferred mode is in effect.

5. The deferred mode is canceled by calling MXEXEC.
CALL MDWAIT ()
CALL MCWAIT ()

4.3.9 Execute Deferred Memory Requests (MDEXEC/MCEXEC)

MXEXEC causes all deferred mode memory requests to be satisfied with a single call to
the operating system for the required memory. The deferred mode is also canceled.
MDEXEC and MCEXEC are synonyms.

After returning from MXEXEC, all indexes to array space which was deferred are updated.

CALL MDEXEC ()
CALL MCEXEC ()

4.3.10 Report storage information (MDMEMS/MCMEMS)

MxXMEMS reports numeric or character storage information. This information may be
useful for planning storage strategies during code development and for flow control during
code execution.

CALL MDMEMS (NSUA, NSUD, NSUV, NSULV)
CALL MCMEMS (NSUA, NSUD, NSUV, NSULV)

NSUAINTEGERWrite Only NSUA is the number of numeric/character storage units
currently allocated and not deferred.

NSUDINTEGERWrite Only NSUD is the number of numeric/character storage units
currently deferred.

NSUVINTEGERWT rite Only NSUV is the amount of void space in numeric or character

storage units. Note that MDMEMS and MCMEMS may be reporting the same space for
NSUV, but in different units.

29

NSULVINTEGERWTrite Only NSULYV is the size of the largest void space in numeric or
character storage units. Note that MDMEMS and MCMEMS may be reporting the same
space for NSULV, but in different units.

4.4 Development Aids

The routines in this section are designed to aid the programmer during development of a
program, and probably would not be used during execution of a mature program, except as
a response to a memory manager error.

4.4.1 List Storage Tables (MDLIST/MCLIST)
MXLIST prints the contents of the memory manager’s internal tables. Section [Ref:
sec:table] describes these tables. MDLIST and MCLIST are synonyms.

CALL MDLIST (IUNIT)
CALL MCLIST (IUNIT)

IUNITINTEGERRead Only This is the FORTRAN unit number of the output device.

4.4.2 Print Dynamic Array (MDPRNT/MCPRNT)
MxPRNT prints the contents of an individual numeric and character array, respectively.

CALL MDPRNT (NAME, IUNIT, TYPE)
CALL MCPRNT (NAME, IUNIT, NGRUP)

NAMECHARACTER\last (\last)Read Only This is the name of the array to be printed.
IUNITINTEGERRead Only This is the FORTRAN unit number of the output device.

TYPECHARACTER\last (\last)Read Only TYPE indicates the data type of the data to be
printed; "R" for REAL, or "I" for INTEGER. Note that this is not necessarily the declared
type of the base array.

NGRUPINTEGERRead Only NGRUP controls the number of characters that are grouped
together without intervening spaces. Since the storage is declared as a CHARACTER\last
1 array, NGRUP allows the user to format the output consistent with longer character
strings.

4.4.3 Debug Printing (MDDEBG/MCDEBG)

Debug printing causes error messages to be printed by the memory manager at the time an
error is detected. The default is no debug printing — errors are detected, but are only
reported when requested by MXSTAT and MXERPT. MDDEBG and MCDEBG are syn-
onyms.

CALL MDDEBG (IUNIT)
CALL MCDEBG (IUNIT)

30

IUNITINTEGERRead Only IUNIT controls debug printing. A negative or zero value turns
debug printing off. A positive value of IUNIT will cause any error messages to be printed
to FORTRAN unit number IUNIT.

31

Intentionally Left Blank

32

5 EXTENSION LIBRARY

The SUPES Extension Library provides a uniform interface to necessary operating system
functions which are not included in the ANSI FORTRAN-77 standard. While the Exten-
sion Library itself is implemented in the C programming language, the interface from a
FORTRAN calling program is implemented in the same manner as in previous versions of
SUPES [SUPES]. Thus, in the sections below which describe the calling sequence, the
calls are defined accordingly. This package makes it possible to maintain many codes on
different operating systems with a single point of support for system dependencies. More-
over, this maintenance is done via a single set of source files which should not only reduce
the time involved in bookkeeping, but allow for the procedures for building a SUPES
library to be codified as well. These routines provide very basic operating system support;
they are not intended to implement clever features of a favorite system, to make FOR-
TRAN behave like a more elegant language, or to improve execution efficiency.

Each module included in the SUPES Extension Library must satisfy the following criteria:
1. The routine must provide a service which is beneficial to a wide range of users.
2. This task cannot be accomplished via standard FORTRAN.

3. This capability must be generic to scientific computers. Extension library routines must be supportable on
virtually any system.

The SUPES Extension Library routines are designed to minimize the effort required to
implement this software on a new operating system. This is especially true given that the
current single set of source files handle a variety of system architectures and software
configurations, making those files useful as starting points for a new port. Operating system
dependencies have been isolated at the lowest possible level with the major difficulty of a
specific port being that of supplying the proper FORTRAN interface with each C
subprogram module. To make the above comments more concrete, consider the following
section of code excerpted from the sourcedidate.c

#include <errno.h>

#if defined (unix)
if defined (alliant)

include <sys/types.h>
include <sys/time.h>
exdate ('string) /* Sadly, on the Alliant, */
[* strings are not passed */
[* similar to the SUN. */
char *string;

endif /* Alliant */
if defined (sun)

include <sys/time.h>

exdate (string, len)
char *string;

33

long len;

else /* Not Sun */
if defined (CRAY)

include <sys/types.h>
include <time.h>
include <fortran.h>
EXDATE(string)
_fed string;

H*H H H*

endif /* Unicos */

endif /* Sun */
#else /* Not UNIX */
if defined (VMS)

#include time
#include descrip
exdate(string)
struct dsc$descriptor_s *string; /* We know that the VAX

saves */
/* FORTRAN char arrays */
/* as descriptors. */
else [* not VMS */
endif [* VMS */
#endif /¥ UNIX */
The passages beginning witli defined guery the system at compile time through

the use of a pre-processor to determine the hardware/software configuration. It should be
obvious that the FORTRAN-C interfacing is a nontrivial step. Specifically, note how each
machine defines the module name, as well as the argument types in some cases, differently.
One must exercise a great deal of caution, when attempting to implement a port, to correctly
predict how this step is to done. It is hoped that the examples provided in the form of the
source files will give the necessary hints at where to start on such a venture. Often the
appropriate symbols are defined automatically. To find out which one’s are, just consult the
compiler and pre-processapfp) documentation for your particular application. On each

of the machines listed, the call is invoked via the uniform FORTRAN call:

CALL EXDATE(STRING)

5.1 User Interface Routines

This section prescribes the calling sequence for FORTRAN Extension routines that are
meant to be called directly from application programs.

5.1.1 Get Today’'s Date (EXDATE)
CALL EXDATE(STRING)

34

STRINGCHARACTER\last 8Write Only Current date formatted as “MM/DD/YY” where
“MM”, “DD”, and “YY” are two digit integers representing the month, day, and year,
respectively. For example, “07/04/86” would be returned on July 4, 1986.

5.1.2 Get Time of Day (EXTIME)
CALL EXTIME(STRING)

STRINGCHARACTER\last 8Write Only Current time formatted as “HH:MM:SS” where
“HH”, “MM”, and “SS” are two digit integers representing the hour (00-24), minute, and
second, respectively. For example, “16:30:00” would be returned at 4:30 PM.

5.1.3 Get Accumulated Processor Time (EXCPUS)
CALL EXCPUS(CPUSEC)

CPUSECREALWrite Only Accumulated CPU time in seconds. The base time is
undefined; only relative times are valid. This is an unweighted value which measures
performance rather than cost.

5.1.4 Get Operating Environment Parameters (EXPARM)
CALL EXPARM(HARD,SOFT,MODE,KCSU,KNSU,IDAU)

HARDCHARACTER\last 8Write Only System Hardware ID. For example, “CRAY-1/S".
SOFTCHARACTER\last 8Write Only System Software ID. For example, “COS 1.11".

MODEINTEGERWrite Only Job mode: 0 = batch, 1=interactive. For this purpose, an
interactive environment means that the user can respond to unanticipated questions.

KCSUINTEGERWTrite Only Number of character storage units per base system unit.
KNSUINTEGERWT rite Only Number of numeric storage units per base system unit.

IDAUINTEGERWTite Only Units of storage which define the size of unformatted direct
access I/O records: 0 = character, 1 = numeric. (For a more in-depth discussion of this topic,
the reader is referred to the VAX FORTRAN manual, section 13.1.21.)

The ANSI FORTRAN standard defines a character storage unit as the amount of memory
required to store one CHARACTER element. A numeric storage unit is the amount of
memory required to store one INTEGER, LOGICAL, or REAL element. For this routine,

a base system unit is defined as the smallest unit of memory which holds an integral number
of both character and numeric storage units.

The last three parameters above can be used to calculate the proper value for the RECL
specifier on the OPEN statement for a direct access I/0O unit. For example, if NUM is the
number of numeric values to be contained on a record and IDAU=0, set RECL = (NUM *
(KCSU + KNSU-1)) / KCSU.

35

5.1.5 Get Unit File Name or Symbol Value (EXNAME)
CALL EXNAME(IUNIT,NAME,LN)

IUNITINTEGERRead Only Unit number if IUNIT > 0, or symbol ID if IUNE O.

NAMECHARACTER\last (\last)Write Only File name or symbol value obtained from the
operating system. It is assumed that the unit/file name or symbol/value linkage will be
passed to this routine at program activation.

LNINTEGERWTrite Only Effective length of the string returned in NAME. Zero indicates
that no name or value was available.

This routine provides a standard interface for establishing execution time unit/file
connection on operating systems (such as CTSS) which do not support pre-connection of
FORTRAN I/O units. The returned string is used with the FILE specifier in an OPEN
statement, as in the following example.

CALL EXNAME(10,NAME,LN)
OPEN(10,FILE=NAME(L.LN),...)

The symbol mode of this routine provides a standard path through which to pass messages
at program activation. An example use is identifying the target graphics device for a code
which supports multiple devices.

5.2 Utility Support Routines

The routines prescribed in this section are intended primarily to support the SUPES free
field input and memory manager utilities. While calling these routines directly will not
disturb the internal operation of these other facilities, the use of EXMEMY (section [Ref:
sec:exmemy]) in conjunction with the memory manager is discouraged.

5.2.1 Convert String to Uppercase (EXUPCS)
CALL EXUPCS(STRING)

STRINGCHARACTERI\last (\last)Read and Write Character string for which lowercase

letters will be translated to uppercase. All other characters which are not in the printable
ASCII character set are converted to spaces.

5.2.2 Prompt/Read/Echo Input Record (EXREAD)
CALL EXREAD(PROMPT,INPUT,IOSTAT)

PROMPTCHARACTER\last (\last)Read Only Prompt string.
INPUTCHARACTER\last (\last)Write Only Input record from standard input device.

IOSTATINTEGERW Tite Only ANSI FORTRAN [/O status:
IOSTAT < 0 End of File

36

IOSTAT = 0 Normal
IOSTAT > 0 Error

This routine will prompt for input if the standard input device is interactive. In any case,
the input line will be echoed to the standard output device with the prompt string as a prefix.

5.2.3 Evaluate Numeric Storage Location (IXLNUM)
NUMLOC = IXLNUM(NUMVAR)

NUMVARINTEGER or REALRead Only Any numeric variable.

NUMLOCINTEGERWT ite Only Numeric location of NUMVAR. This value is an address
measured in ANSI FORTRAN numeric storage units.

5.2.4 Evaluate Character Storage Location (IXLCHR)
CHRLOC = IXLCHR(CHRVAR)

CHRVARCHARACTERRead Only Any character variable.

CHRLOCINTEGERWTrite Only Character location of CHRVAR. This value is an address
measured in ANSI FORTRAN character storage units.

5.2.5 Get/Release Memory Block (EXMEMY)
CALL EXMEMY(MEMREQ,LOCBLK,MEMRTN)

MEMREQINTEGERRead Only Number of numeric storage units to allocate if MEMREQ
> 0, or release if MEMREQ < 0.

LOCBLKINTEGERRead (release) or Write (allocate) Numeric location of memory block.
This value is an address measured in ANSI FORTRAN numeric storage units. Only
memory previously allocated to the caller via EXMEMY can be released via EXMEMY.

MEMRTNINTEGERWT ite Only Size of memory block returned in numeric storage units.

In allocate mode, MEMRTN < MEMREQ indicates that a sufficient amount of storage
could not be obtained from the operating system. MEMRTN > MEMREQ indicates that the
operating system rounded up the storage request.

In release mode, memory will always be released from the high end of the block downward.
MEMRTN = 0 indicates that the entire block was returned to the operating system.

5.3 Skeleton Library

The Skeleton Library is an integral part of the SUPES Extension Library architecture.
Each library module has a skeleton version which is written in fully standard FORTRAN.
These routines are operational, thoughfunctional. The skeleton routines can serve as

37

temporary placeholders for use when developing the Extension Library on a new system.
Such an approach allows one to achieve interim support during the development period so
that the functional version of each module can be developed individually, if necessary.

Application codes which call SUPES Extension Library routines should be structured to
work with the Skeleton Library, albeit at a reduced level, whenever possible. This provides

a consistent migration path for supporting these codes on a new system. The consequences
of skeletal support for the Extension Library on higher level SUPES utilities is clearly
documented in this report.

5.3.1 Skeleton Routine Specifications
The results produced by each Skeleton Library module are prescribed below.

1. EXDATE returns the string “00/00/00".
EXTIME returns the string “00:00:00".
EXCPUS returns zero.

A 0D

EXPARM returns blank strings for hardware and software IDs, a zero which indicates batch mode, and
unity for the three storage parameters.

EXNAME returns a null string; the result string is undefined and the length returned is zero.
EXUPCS converts all non-ANSI characters to spaces.

EXREAD simply reads from the standard input device.

IXLNUM returns unity.

© © N o O

IXLCHR returns unity.

10. EXMEMY allocates memory from the named COMMON block /EXTLIB/. The size of this static pool
defaults to 1024, but can be changed by modifying a PARAMETER statement.

38

6 SUPPORT PROGRAMMER'S GUIDE

This chapter documents the internal architecture for SUPES. It is intended to guide the
maintenance of SUPES and support of SUPES on new operating systems. The conse-
guences of using the Skeleton FORTRAN extension library on the internal operation of
SUPES is fully discussed.

6.1 Free Field Input

The SUPES free field input system consists of four subroutines: FREFLD (section [Ref:
sec:frefld]), FFISTR (section [Ref: sec:ffistr]), GETINP (section [Ref: sec:getinp]), and

STRIPB (section [Ref: sec:stripb]). All of these routines are written in fully standard

ANSI FORTRAN.

FREFLD calls the extension library routine EXUPCS (section [Ref: sec:exupcs]). If only
the skeleton version of EXUPCS is available, case insensitivity of input data (rule [Ref:
itm:case] of section [Ref: sec:syntax]) can not be guaranteed.

FFISTR is the input line parsing routine. It is called by FREFLD, but the user is free to call
it independently. The input line may be of arbitrary length.

GETINP calls the extension library routine EXREAD (section [Ref: sec:exread]). If only
the skeleton version of EXREAD is available, GETINP will not prompt nor guarantee echo
when reading from the standard input device (KIN = 0).

6.1.1 Implementation Notes on FREFLD

This section contains a basic outline of the internal operation of the free field input system
and other supplemental information. More complete documentation is contained within
the code itself.

FREFLD is organized into five phases:
1. All the output arrays are initialized to their default values.
2. The next input record is obtained via GETINP. Processing of a continuation line begins with this phase.

3. The effective portion of the input line is isolated by stripping any comment and leading/trailing blanks. A
flag is set if a continuation line is to follow this record.

4. All field separators are made uniform. This phase streamlines the main processing loop which follows.

5. Successive fields are extracted, translated, and categorized until the input line is exhausted. After the max-
imum number of fields is reached, fields are counted but not processed further.

Upon leaving the main translation loop, the routine is restarted at phase 2 if the continuation
flag is set.

The only errors returned by FREFLD are any returned from GETINP.

39

A data field is left-justified to define a CHARACTER value, but must be right-justified to
obtain a numeric value. An internal READ is used to decode a numeric value from a data
field. FREFLD relies upon the IOSTAT specifier to determine if the field represents a valid
numeric format; this presents the possibility that some non-standard numeric strings may
be interpreted inconsistently by various operating systems. Default numeric values are
overwritten if and only if IOSTAT indicates a valid translation.

CHARACTER data manipulation tends to be the area of lowest reliability for FORTRAN
compilers, especially with supercomputers. An attempt was made in coding FREFLD to
minimize the risk of triggering compiler bugs by manipulating pointers rather than shifting
CHARACTER strings.

6.1.2 Test Program for FREFLD

A simple test program which calls FREFLD is included with the SUPES free field input
system. FREFLD is instructed to digest data entered via the standard input device (e.g.,
keyboard), then the results are dumped to the standard output device (e.g., screen). This
program should always be run to verify proper operation of FREFLD on a new operating
system or compiler. Application programmers are encouraged to experiment with this pro-
gram to learn what to expect from FREFLD. A sample session from a Sun 4/60 Worksta-
tion follows:

% ffrtest <-- At the system prompt, enter the program name.
1: Thisis an example <-- Atthe SUPES prompt, the user enters aline,
etc.
NFIELD = 4
I KV(I) CVv(l) RV(I) V(1)
1 0 "THIS " 0. 0
2 2 "IS " 0. 0
3 0 "AN " 0. 0
4 0 "EXAMPLE " 0. 0
5 -1 " 0. 0
2: Another line = example.
NFIELD= 3
I KV(I) CVv(l) RV(I) V(1)
1 0 "ANOTHER " 0. 0
2 0 "LINE " 0. 0
3 0 "EXAMPLE. " 0. 0
4 -1 " 0. 0
5 -1 " 0. 0
3: This is a further 3.e5
NFIELD= 6
I KV(I) CVv(l) RV(I) V(1)
1 0 "THIS " 0. 0
2 2 "IS " 0. 0
3 2 "A " 0. 0
4 0 "FURTHER " 0. 0
5 2 "3.E5 " 3.000E+05 300000
4: exit
NFIELD= 1
I KV(I) CVv(l) RV(I) V(1)
1 0 "EXIT " 0. 0

40

2 -1 0 0
3 -1 0 0
4 -1 0. 0
5 -1 0. 0
5:rC <-- To exit, the user enters a *C.

%

6.2 Memory Manager

This section includes details of the internal operations of the memory manager, assump-
tions used in the memory manager, and details on the implementation of the memory man-
ager on systems which do not support the extension library.

6.2.1 Table Architecture and Maintenance

The bookkeeping for the memory manager is accomplished with three tables; a memory
block table, a void area table, and a dictionary.

Thememory block tablenaintains a record of contiguous blocks of memory that have been
received from the operating system. If a series of requests causes separate blocks to become
contiguous, these blocks are joined. The beginning location and length of each memory
block is recorded, and the table is sorted in location order.

Within each memory block, sections of memory that are not currently allocated to arrays
are recorded in theoid area tableAs in the case of the memory block table, contiguous
voids are joined and this table is sorted in location order.

Thedictionaryrelates storage locations with eight character array names. The dictionary is

sorted via the default FORTRAN collating sequence. All characters (including blanks) are

significant. All names are converted to upper case then blank filled or truncated to eight

characters. In addition to the array name, the dictionary stores the location and length of
each dynamic array.

Any call for memory (MDGET or MDRSRV) will be satisfied in one of two ways:

1. If a void of sufficient size is available, then this void will be used for the new array (MDRSRYV). In the
case of MDGET, no further action is taken.

2. An extension library call (EXMEMY) is made to get more memory from the system.

A request to extend an array (MDLONG) is satisfied in one of three ways:
1. If a void of sufficient size exists at the end of the array, then this space is allocated to the array.

2. If avoid large enough for the extended array exists elsewhere in memory, the array is moved to this loca-
tion. Note that the data is actually shifted and the pointer is updated.

3. An extension library call (EXMEMY) is made to get more memory from the system.
A call to MDCOMP will cause all arrays within each memory block to be moved to the

lower addresses (pointers) within that memory block. Thus, all voids in the block will be
joined at the end of the block.

41

A call to MDGIVE will attempt to return memory to the system. Only voids at the end of

a memory block are subject to this attempt, and the system may accept only portions of
these. Thus a call to MDCOMP followed by MDGIVE will release the maximum memory
to the system.

6.2.2 Non-ANSI FORTRAN Assumptions
Although the memory manager is written in standard FORTRAN-77, it does depend on
some assumptions which are not part of the ANSI standard. These assumptions are:

1. The contents of a word are not checked nor altered by an INTEGER assignment. Data is moved by MD-
LONG or MDCOMP as INTEGER variables.

2. Strong typing is not enforced between dummy and actual arguments. This allows the same base array to
pass storage to any INTEGER, REAL, or LOGICAL array.

3. Array bounds are not enforced. Thus, any value is a valid subscript for the base array.

4. All dynamically allocated memory must remain fixed in relation to the base array.

6.2.3 Standard FORTRAN Implementation

If an installation does not yet support the extension library, it is still possible and advanta-
geous to use the memory manager. In this case, the memory manager will act as a dynamic
allocator of static (already dimensioned) memory. Codes which employ the memory man-
ager therefore do not need to be rewritten, and codes under development can anticipate the
implementation of the extension library.

When the subprograms IXLNUM or EXMEMY of the extension library are not available,
the following steps must be taken before using the memory manager:

1. Install the skeleton version of the extension library (Section [Ref: sec:skel]).

2. Alter the memory manager subroutine MDINIT as follows:
ORIGINAL
DIMENSION MYV(1)

ALTERED
PARAMETER (MAXSIZ=1024)
COMMON /EXTLIB/ MYV(MAXSIZ)

3. Put the base vector in the user’s program in the COMMON block EXTLIB and dimension it consistently
with the COMMON blocks in EXMEMY and MDINIT.

4. If more than 1024 numeric storage units are required, change the parameter statement in MDINIT,
EXMEMY and the user’s program.

6.2.4 Test Program

In order to aid the installation of the memory manager at a new site, an interactive test pro-
gram has been written which allows the user to exercise each of the features of the mem-
ory manager and insure that it is operating properly. While the proper implementation of
the memory management test program requires an in-depth examination of the corre-
sponding source file, a short test run on a Cray running the UNICOS operating system fol-
lows (comments are included after an arrow,):

% memtest <-- At the system prompt, enter program name.

42

FUNC: mdinit <-- At the SUPES prompt, the user enters a string, etc.
FUNC: mcinit

FUNC: mdwait

FUNC: mdrsrv reall 108

POINTER: -65733

FUNC: mcrsrv char 850

POINTER: -532696

FUNC: mdrsrv real2 108

POINTER: -65733

FUNC: mdexec

POINTER BEFORE -65733

POINTER AFTER 17879 <-- Having the pointer updated is vital!
FUNC: mdlist

*kkkkkkkkkkkkkkkkkkkkkkkkkhkhkhkkhhkkkkkkkkkkkkkkhkhkkkk

O * k k kk k% [)I (: 1" () Pq /\ F? \(*kkkkkk

0 NUMERIC CHARACTER
NAME LOCATION LENGTH LENGTH

1 CHAR 17664 107 850

2 REAL1 17771 108 -1

3 REAL2 17879 108 -1
0 TOTAL 323 850
0***VOID TABLE***
0 LOCATION LENGTH

1 17987 61

0 TOTAL 61
*kkkkkhkkkkkhkhkhkhhhkhkhhhkhhhhhhhhhhkhhhhhhhhhhhkhriiikx
O * k k% %k % % () FQ [) EE Fz EE [) L I E; T‘ * * k% k % %
0 NUMERIC CHARACTER
NAME LOCATION LENGTH LENGTH

1 CHAR 17664 107 850

2 REAL1 17771 108 -1

3 REAL2 17879 108 -1

4 17987 61
BLOCK SIZE 384 850
ALLOCATED TOTAL 384 850

GRAND TOTAL 384 850

FUNC: exit

STOP in MEMTEST

%

6.3 Extension Library Implementation

Implementing the SUPES extension library on a new operating system requires a firm
understanding of that system, but should not require a great deal of programming. Since
the package is by definition system dependent, it is impossible to predict the exact proce-
dure which will be required to implement these routines on a given operating system. This
section provides some general guidelines and hints compiled from experience in imple-

menting the package on several very different systems.

As has been mentioned previously, this version represents a change in philosophy
regarding the procedure for implementing a port of the extension library. Specifically,
many of the features of the extension library require a richer data type than is available in

43

ANSI FORTRAN 77. For example, the requirement to do pointer assignment for the
memory management made it desirable to utilize a more flexible programming language.
The language chosen was C . A direct consequence of this is that the entire SUPES
extension library is now coded in a single set of source files across all supported machines.
Among the advantages are:

1. Itreduces the amount of bookkeeping that is necessary to maintain the library across a number of machine
architectures at a given site,

2. It now allows for a codified approach to building the library on any given machine, and finally,

3. It permits one to use the current source as an example for a future port.

Of course, these advantages do come at a cost. The FORTRAN-C interface must now be
handled at the source level in the extension library. This is an extremely system dependent
area. However, most systems do allow for such a scenario, and, accordingly, it tends to be
documented quite extensively.

The code should be well commented and references to appropriate system manuals should
be included.

The original FORTRAN version of the skeleton library will continue to be part of the
distribution. To use them, it is recommended that one start with the skeleton library routines
and gradually add system dependent code to provide full capability. Examples are provided
in the distribution in the form of the original source code for VAX/VMS and Cray CTSS
with the CFTLIB FORTRAN run-time library. In fact, for the latter case that code
represents the only method of implementation of SUPES. This is entirely due to the lack of
a suitable FORTRAN-C interfacing scheme under that system.

If this is the desired plan, it is suggested that extension library modules be implemented in
the following order:

1. EXUPCS. The skeleton version should be sufficient.

2. EXTIME, EXDATE, EXCPUS, IXLNUM, and EXPARM. These routines are generally straightforward
and can be accomplished simply with the aid of the FORTRAN and/or C Run Time Library manuals for
the particular operating system.

3. EXREAD, EXNAME, EXMEMY, and IXLCHR. These routines require a more intimate knowledge of
the operating system. A substantial set of system documentation may be required to accomplish these
tasks.

6.3.1 Implementation Notes for Modules

The format of the date fd&EXDATE must be strictly observed. Many systems supply a
date service routine which formats the date in a different style. Conversion to the SUPES
format should be straightforward.

Most systems provide a time of day service routine which formats the time in the desired

style. Some systems also return fractional seconds which can easily be trimmed off. In any
case, the format specified BXTIME must be strictly observed.

44

EXCPUS is intended to measure performance rather than cost. The quantity returned by
EXCPUS should be raw CPU seconds; any weighting for memory use or priority should be
removed. I/O time should be included only if it is performed by the CPU.

The hardware ID string f&EXPARM should reflect both the manufacturer and model of
the processor. For example, “VAX 8600” rather than just “VAX” allows the user to make
sense of the CPU time returned by EXCPUS.

The software ID string should reflect the release of the operating system in use, such as
“COS 1.11". It is not a trivial exercise to provide all pertinent information in eight
characters for ad hoc systems like CTSS which vary widely between installations. For
example, the string “CFTLIB14” has been used to indicate a variation of the SUPES
package for CTSS using CFTLIB and the CFT 1.14 compiler.

On most systems KCSU will give the number of characters per numeric word and KNSU
will be unity. For a hypothetical 36-bit processor which allows 8-bit characters to cross
word boundaries, KCSU=9 and KNSU=2 would define the storage relationship.

The proper value for IDAU should always be indicated in the reference manual for the
compiler where it discusses Unformatted Direct Access files.

The unit/file mode ofEXNAME should follow as closely as possible to whatever
convention the particular operating system uses for connecting a FORTRAN 1/O unit to a
file at execution time. This feature should be easy to implement on systems which support
pre-connection. Support for units 1-99 should be sufficient.

The symbol mode feature of EXNAME should be designed to obtain messages from the
system level procedure which activates the program. Eight characters per symbol is a
reasonable limit. Support for symbols 0-7 should be adequate.

Support for EXNAME not only requires coding the routine itself, but also designing the
system procedure level interface. This interface should always be designed before coding
EXNAME. It should fit as cleanly as possible into normal techniques for writing
procedures for the system.

The skeleton version &XUPCS is designed to work on any system which supports lower
case letters. This routine will rarely require any change.

EXREAD must provide a prompt for an interactive device and guarantee that input is
echoed. This requires a careful determination of the current execution environment. For
example, EXREAD must be able to handle input from a script file as well as from a
terminal. Any automatic echo service provided by the operating system should be
employed wherever possible, as long as the user supplied prompt appears along with the
input data echo.

45

In all instances, the C programming language provides a clean method for returning the
address fotxXLNUM . In some cases it may be necessary to convert the address to numeric
units. For example, addresses on VMS must be divided by four to convert from bytes to
numeric storage units. The same cannot necessarily be said for a character address as
returned byIXLCHR . The reader is referred to the source idehr.c for further

details on how to attack this problem.

EXMEMY is the most crucial routine in the extension library—and one the primary
reasons for choosing to do the extension library in C. As opposed to in the past, this latest
approach has made it one of the most straightforward in the entire extension library.
However, care should still be taken to ensure that both memory block locations and sizes
are measured in numeric storage units. In the current version of SUPES, memory is
allocated in blocks of 512 bytes (a number which can be changed at compile time) to
improve performance. EXMEMY should return the precise amount of memory allocated.
Any memory that is given by the system, but not requested by the user is kept track of in a
void table by the memory manager. So, it is generally unnecessary to keep track of memory
blocks allocated via EXMEMY.

6.3.2 Extension Library Test Program

A short program which exercises all features of the SUPES extension library is available.
This program should be considered a starting point for testing a new implementation.
Other tests which more extensively exercise complex modules, such as EXMEMY, should
be developed as needed. An example session on a Sun 4/60 Workstation follows (with
comments offset by an arrow-):

% setenv FORO0O01 junk.dat <-- Test EXNAME.

% exttest <-- At the system prompt, invoke the procedure.
TST: Idkj <-- At the SUPES prompt, the user enters a string.
Input line = LDKJ <-- The input line is returned in upper case.
Date = 12/18/89

Time = 09:58:05

Unit 1 name = junk.dat

Unit 10 name =

Symbol 1 =

Processor = Sun4 System = 0S4.0.3c Mode = 1
Character, Numeric, D/A Units: 4 1 0

Memory block location and length: 24700 128

Numeric difference = 4

Character difference = 4

CPU time = 7.00000E-02

6.4 Installation Documentation Guidelines

A supplement to this document should be written for each operating system on which
SUPES is installed. As a minimum, this supplement should include:

1. How to access the SUPES library and link it to an applications program. Individual copies of SUPES
should never be propagated as this reduces the quality assurance level of SUPES.

2. How to interface from the operating system to EXNAME for both unit/ file mode and symbol mode.

46

3. How to interface to EXREAD via an interactive device. Information such as how to signal an end of file
should be specified.

Any known bugs or idiosyncrasies.

The installation supplements for several operating systems are included in the Appendix.

a7

48

7 References
1. American National Standard Programming Language FORTRAN, American
National Standards Institute, Inc., ANSI X3.9-1978, New York, 1978.

2. D. P. Flanagan, W. C. Mills-Curran, and L. M. Taylor, “SUPES A Software
Utilities Package for the Engineering Sciences,” SAND86-0911, Sandia
National Laboratories, Albuguerque, NM, September 1986.

49

50

8 SITE SUPPLEMENTS

This appendix contains a supplement for each site at which SUPES is currently installed.
Changes to the current systems and the addition of new sites will require that this appen-
dix be amended; the information contained here should be considered just a starting point.

All system independent source code for SUPES is stored on the SNLA Central File System
(CFS) with those files having a file type of “.STX” being stored in Standard Text format.
The SNLA installation of SUPES contains both the previous and new versions. This is done
for two reasons, first, to provide the necessary compatibility during an interim migration
period, and, second, to assure that current users of Cray/CTSS continue to have a point of
reference for the SUPES library.

The previous version is stored under the root directory “/SUPES”. The table below
documents the files stored in this directory.

Node Contents

FRE_FLD.STX Free field reader source code

MEM_MGR.STX Memory manager source code

EXT_LIB.STX Skeleton FORTRAN extension library source code
FRR_TEST.STX Free field reader test program source code
MEM_TEST.STX Memory manager test program source code
EXT_TEST.STX FORTRAN extension library test program source code

The current version is stored under the CFS root directory “/SUPES2_1" in the following
files (the last two araotin Standard Text Format):

Node Contents

FRE_FLD.STX Free field reader source code

MEM_MGR.STX Memory manager source code

EXT_LIB.STX Portable C extension library source code
FRR_TEST.STX Free field reader test program source code
MEM_TEST.STX Memory manager test program source code
EXT_TEST.STX Extension library test program source code
SUPES2 1.BCK The version 2.1 distribution in VMS BACKUP format
SUPES2_1.TAR The version 2.1 distribution in UN*X TAR format

51

[Footnote: Note that these files awet/ stored in Standard Text] The current extension
library has been ported to run on the following machine/operating system combinations:

1. Sun 3 and Sun 4 running SunOS operating system version 4.0.3 and later,
2. VAXen running VMS version 4.5 and later,

3. Cray X/MP and Y/MP running UNICOS version 5.0 and later, and

4. Alliant F/X 8 running Concentrix 5.0.0.

A notable exception to the above list is the Cray using the CTSS operating system. This
configuration still requires the FORTRAN source code for the extension library that was
provided in previous implementations of SUPES. This code continues to be included in the
current standard SUPES distribution, though a build procedure designed for this system is
not.

These files may be retrieved via the MASS utility and converted to Native Text Format via
the NTEXT utility. Sandia personnel may consult the Computer Consulting and Training
Division (2614) for details on these utilities.

8.1 Site Supplement For 1500 VAX Cluster (VAX/VMS 5.1)

8.1.1 Linking

The SUPES package is accessed on the 1500 VAX CLUSTER (SAV01, SAV03, SAV07
and SAV08) as an object library located via either of two system logical names. Which
one that the user uses depends on which version that he or she wants to use. The older
SUPES routines are linked to an application program as follows:

$ LINK your_program,SUPES/LIB,etc.

While the newer version can be accessed at link time via:
$ LINK your_program,SUPES2_1/LIB,etc.

The last of the above commands assumes that the SUPES2_1 library has been installed by
someone using tieMSINSTALL.COM command procedure. If that is not the case, then

the user will be informed by tHdNK er that there is an abundance of unsatisfied external
references that have been made. To avoid this scenario, one should be sure to provide the
VAX C Run Time Library to th&INK command. One way to do this appropriately is to
modify the above link command as:

$ LINK your_program,SUPES2_1/LIB,SYSS$LIBRARY:VAXCRTL/LIB

The alternative is to define the logitaNK$LIBRARY to beSYS$LIBRARY:VAXCRTL

For systems which already have this logical assigned, define the logical
LNKS$LIBRARY _n, where n is the smallest integer for which the corresponding logical has
not been assigned. (Hints about how to go about this are provided in the file
[.BUILD]VMSINSTALL.COM)

52

8.1.2 Defining Unit/File or Symbol/Value for EXNAME:

Both versions of SUPES use this extension library call in the same manner. A file name is
connected to a unit number via a logical name of the form FORnnn, where “nnn” is a three
digit integer indicating the FORTRAN unit number. For example:

$ ASSIGN CARDS.INP FOR007

causes the following FORTRAN statements to open “CARDS.INP” on unit 7.

CALL EXNAME(7, NAME, LN)
OPEN(7, FILE=NAME(L:LN))

One caveat to note regarding the above sequence is thaliS8I&N statement is not
performed, the user program will abort with an error inQR&ENstatement. A possible, or
preferred code sequence is:
CALL EXNAME(7, FILENM, LN)

IF(LN .EQ.0) THEN ! EXNAME returns a zero for LN if no ASSIGN
! has been performed. Use the system default.

OPEN(7)

ELSE I I've found an ASSIGN'd filename, use it.
OPEN(7, FILE=FILENM)

ENDIF

where the system default mentioned in the above FORTRAN comment is a file named
“FORO007.DAT” in the current default directory.

EXNAME looks for a DCL symbol of the form EXTnn, where “nn” is a two digit integer
which defines a symbol number. For example:

$ EXTO1 = "HELLO"

will cause the following call to return NAME="HELLO” and LN=5.
CALL EXNAME(-1, NAME, LN)

8.1.3 Interface to EXREAD

EXREAD will prompt to, and read from, SYS$INPUT. It will automatically echo to
SYS$OUTPUT if that device is a terminal. However, if a program is run in a context
where SYS$OUTPUT isot a terminal, such as from within a command procedure, the
input is not echoed—the user will have to control this himself with an appropriate call
parameter to the routine FREFLD. EXREAD supports all the VMS command line editing
features (e.g., CTRL/U, <up-arrow>, etc.). An end-of-file from the terminal keyboard is
indicated by CTRL/Z.

8.1.4 Additional Comments Regarding SUPES2_1

When attempting to redefine the logical SYS$OUTPUT, the user should note that under
VMS, the mixed language environment has a minor side effect: two versions of the output
file are created by default. To avoid this scenario, he or she, will have to explicitly open the
file. The following code segment demonstrates the required command sequence:

$ OPEN/WRITE SYSOUT OUTPUT.DAT

53

$ ASSIGN/USER_MODE SYSOUT SYS$OUTPUT
$ RUN PROG
$ CLOSE SYSOUT

Finally, the user should be aware that his or her program is being linked with the VAX C
Run-time Library. Consequently, certain function, subroutine or more generally, external
symbol names [Footnote: This doestinclude FORTRAN keywords, for exampREAD
andWRITEstatements.] might be in conflict with some of these run time library functions.
These include the names:

SPRINTF
GETENV
READ
WRITE
STRNCPY
STRCPY
STRLEN
SBRK
BRK
10.ISATTY
11.PERROR
12.1SASCII
13.ISCNTRL
14.1SALPHA
15.ISLOWER
16. TOUPPER

=

© © N o gk~ 0D

The remedy is to redefine any user-supplied conflict when warned by the linker of multiply
defined symbol names.

8.1.5 Source Code

The source code for the old FORTRAN extension library for the VAX/VMS operating sys-
tem is stored in the SNLA Central File System under node “/SUPES/VMS/
EXT _LIB.STX” in SNLA Standard Text format. Conversely, the new version is in “/

SUPES2 1/EXT_LIB.STX".

8.2 Site Supplement for SNLA CRAY-1/S (COS 1.11)

8.2.1 Linking

The newer version of SUPES is not available for this system. However, the older package
can still be accessed on the SNLA CRAY-1/S using COS 1.11 as an object library. The
permanent dataset containing SUPES is accessed as follows:

ACCESS,DN=SUPES,ID=ACCLIB.

54

SUPES routines are then linked to an application program as follows:
LDR,other_options,LIB=SUPES:other_libraries.

8.2.2 Defining Unit/File or Symbol/Value for EXNAME
A file name is connected to a unit number via an alias of the form FTnn, where “nn” is a
two digit integer indicating the FORTRAN unit number. For example:

ASSIGN,DN=CARDS,A=FT07.

causes the following FORTRAN statements to open '"CARDS’ on unit 7.

CALL EXNAME(7, NAME, LN)
OPEN(7, FILE=NAME(L:LN))

Again, the more suitable code sequence is

CALL EXNAME(7, FILENM, LN)
IF(LN .EQ. 0) THEN I EXNAME returns a zero for LN if no ASSIGN
I has been performed. Use the system default.

OPEN(7)

ELSE I I've found an ASSIGN'd filename, use it.
OPEN(7, FILE=FILENM)

ENDIF

If no file has been assigned the alias for a particular unit, EXNAME will return a file name
of the form TAPENN, where “nn” is a one (if less than ten) or two digit integer indicating
the FORTRAN unit number—this is also the system default.

EXNAME looks for a JCL symbol of the form Jn, where “n” is a one digit integer which
defines a symbol number. For example:

SET(J1="HELLO")

will cause the following call to return NAME="HELLO” and LN=5.
CALL EXNAME(-1, NAME, LN)

8.2.3 Interface to EXREAD

EXREAD will read from $IN and automatically echo to $OUT. COS at SNLA has no
interactive capability.

8.2.4 Known Problems

The CFT 1.11 support routines contain a bug which may cause FREFLD to function
improperly. FREFLD was modified for this installation such that application programs
which call FREFLD should not notice any problem.

The problem is that the CFT 1.11 support routines do not return an error in the IOSTAT
argument for invalid real formats; a zero value and a zero (success) status are returned in
such a case. The symptom observed from FREFLD is that KVALUE will indicate that a
valid REAL value was specified for a data field which contains an invalid REAL format;
the value returned in RVALUE for this field will be set correctly to zero. To work around

55

this problem FREFLD was modified to downgrade KVALUE from one (valid REAL
value) to zero (invalid REAL value) under the following conditions:

1. The field does not contain a valid INTEGER value.
2. The REAL value translated for the field is zero.

3. The field does not begin with '0." nor '.0'.

8.2.5 Source Code

The source code for the FORTRAN extension library for the COS 1.11 operating system is
stored in the SNLA Central File System under node “/SUPES/COS/EXT_LIB.STX” in
SNLA Standard Text format. The source code for the modified version of FREFLD
described above is stored under node “/SUPES/COS/FRE_BUG.STX” in SNLA Standard
Text format.

8.3 Site Supplement for SNLA CRAY-1/S (UNICQOS)

8.3.1 Linking
The new version of SUPES is the only one that is available for this system. It resides in the
directory/ustr/local/lib with the file naméibsupes.a

In what follows, an example of how the SUPES routines can be linked to an application
program is given:
% cf77 -0 your-executable your-source.f -Isupes.

8.3.2 Defining Unit/File or Symbol/Value for EXNAME

A file name is connected to a unit number via an environment variable of the form
FORONN, where “nn” is a two digit integer indicating the FORTRAN unit number. For
example, if the user is currently running under the shell profyaritcsh | the required
sequence is:

% setenv FORO007 cards.dat

This causes the following FORTRAN statements to opards.dat ' on unit 7.

CALL EXNAME(7, FILENM, LN)
IF(LN .EQ. 0) THEN I EXNAME returns a zero for LN if no ASSIGN
I has been performed. Use the system default.

OPEN(7)

ELSE I I've found an ASSIGN'd filename, use it.
OPEN(7, FILE=FILENM)

ENDIF

From the Bourne Shellbin/sh | the following sequence is required:

$ FORO0O7=cards.dat
$ export TERM

If no file has been assigned, a system default file name of thdddrrm , where 'hn”

is a one (if less than ten) or two digit integer indicating the FORTRAN unit number that
will be written.

56

Similarly, EXNAME looks for an environment variable of the form EXTnn. So that
% setenv EXTO5 hello

will cause the following call to return NAME="hello” and LN=5.
CALL EXNAME(-1, NAME, LN)

8.3.3 Interface to EXREAD
EXREAD will read fromstdin and automatically echo sidout

8.3.4 Known Problems

The Cray running UNICOS appears to have some compiler specific problems when link-
ing programs of differing levels of optimization. To alleviate this situation, two versions of
the SUPES library are maintained /nsr/local/lib , libsupes.a and lib-
supesnopt.a . The user will be responsible for linking to the appropriate library.

8.3.5 Source Code

The source code for the extension library for the UNICOS operating system is stored in
the SNLA Central File System under node “/SUPES2_1/EXT_LIB.STX” in SNLA Stan-
dard Text format.

8.4 Site Supplement For SNLA CRAY X-MP/24 (CTSS/CFTLIB 1.11 or
1.14)

8.4.1 Linking

The old SUPES package is all that is currently available on this system. It is accessed on
the SNLA CRAY X-MP/24 as an object library which is stored in a public library file. Two
versions of this object library exists: one for the CFT 1.11 compiler, and one for the CFT
1.14 compiler. The CFT 1.11 object library is obtained interactively as follows:

lib acclib

ok. x supesl1l

ok. end
switch supesl11 supes

Either compiler version can also be obtained within a CCL procedure. For example, the
CFT 1.14 object library can be extracted by:

lib acclib

-X supesl4

-end

switch supesl14 supes

The SUPES routines are then linked to an application program as follows:
Idr other_options,lib=(supes,other_libraries)

Note that CFTLIB is a dependent library of SUPES, so there is no need to specify cftlib in
the above lib list.

57

8.4.2 Defining Unit/File or Symbol/Value for EXNAME

A file name is connected to a unit number via a name of the form tapenn, where “nn” is a
one (if less than ten) or two digit integer indicating the FORTRAN unit number. This
name can be replaced via the execution line as shown in the following example:

myprog tape7=cards

The above command would cause the following FORTRAN statements within “myprog”
to open “cards” on unit 7:

CALL EXNAME(7, NAME, LN)
OPEN(7, FILE=NAME(L:LN))

EXNAME looks for a symbol on the execution line of the form extn, where “n” is a one
digit integer which defines a symbol nhumber. For example:

myprog ext1=HELLO

will cause the following call within 'myprog’ to return NAME="HELLO” and LN=5.
CALL EXNAME(-1, NAME, LN)

8.4.3 Interface to EXREAD

EXREAD will read from “input” and automatically echo to “output”. By default,
EXREAD connects both “input” and “output” to “tty”. CTSS defines “tty” as the next
higher level controller, which is normally the terminal keyboard / screen for an interactive
job, or the JCI / log files for a batch job. An end-of-file from the terminal keyboard is indi-
cated by a null response (just a carriage return).

The default connections for either “input” or “output” can be overridden on the execution
line as follows:

myprog input=deck output=list

8.4.4 Known Problems

Contrary to the ANSI FORTRAN standard, CTSS does not automatically open the stan-
dard input and output devices. This causes reading from or writing to UNIT=\last to fail
unless you add some CTSS-specific code, such as a PROGRAM statement argument list.
EXNAME and EXPARM, as well as EXREAD, explicitly open the standard input and
output devices according to the rules described above. This is an advantage to the applica-
tions programmer since it avoids nonstandard code, but it places the following restrictions
on any program which calls EXNAME, EXPARM, or EXREAD under CTSS:

1. Do not use a PROGRAM statement argument list.
2. Do not read from nor write to UNIT=* before a call to either EXNAME, EXPARM, or EXREAD.

58

8.4.5 Source Code

The source code for the FORTRAN extension library for the CTSS/CFTLIB/SNLA oper-
ating system is stored in the SNLA Central File System under nodes “/SUPES/VMS/
EXT_111.STX” and “/SUPES/VMS/EXT_114.STX” in SNLA Standard Text format for
the CFT 1.11 and 1.14 compilers, respectively.

8.5 Site Supplement for SNLA Alliant FX/8 (Concentrix 5.0.0)

8.5.1 Linking
The new version of SUPES is the only one that is available for this system. It resides in the
directory/ustr/local/lib with the file naméibsupes.a

In what follows, an example of how the SUPES routines can be linked to an application
program is given:
% fortran -0 your-executable your-source.f -Isupes.

8.5.2 Defining Unit/File or Symbol/Value for EXNAME

A file name is connected to a unit number via an environment variable of the form
FORONN, where “nn” is a two digit integer indicating the FORTRAN unit number. For
example, if the user is currently running under the shell profyaricsh |, the required
sequence is:

% setenv FOR007 cards.dat

This causes the following FORTRAN statements to opards.dat ' on unit 7.

CALL EXNAME(7, FILENM, LN)
IF(LN.EQ.0) THEN IEXNAME returns a zero for LN if no ASSIGN
I'has been performed. Use the system default.

OPEN(7)

ELSE ! I've found an ASSIGN'd filename, use it.
OPEN(7, FILE=FILENM)

ENDIF

From the Bourne Shellbin/sh | the following sequence is required:

$ FORO0O7=cards.dat
$ export TERM

If no file has been assigned, a system default file name of thdddrrm , where 'hn”
is a one (if less than ten) or two digit integer indicating the FORTRAN unit number that
will be written.

Similarly, EXNAME looks for an environment variable of the form EXTnn. So that
% setenv EXTO5 hello

will cause the following call to return NAME="hello” and LN=5.
CALL EXNAME(-1, NAME, LN)

59

8.5.3 Interface to EXREAD
EXREAD will read fromstdin and automatically echo sidout

8.5.4 Source Code

The source code for the extension library for the Alliant is stored in the SNLA Central File
System under node “/SUPES2_1/EXT_LIB.STX” in SNLA Standard Text format.

8.6 Site Supplement for SNLA Sun Workstations (SunOS version 4)

8.6.1 Linking

The new version of SUPES is also the only one that is available for this system. Note that
the SUPES installation must have been performed according to the installation instruc-
tions [Ref: sec:install] . If so, then it resides in the directosy/local/lib with the

file namelibsupes.a

In what follows, an example of how the SUPES routines can be linked to an application
program is given:
% f77 -0 your-executable your-source.f -Isupes.

8.6.2 Defining Unit/File or Symbol/Value for EXNAME

A file name is connected to a unit number via an environment variable of the form
FORONN, where “nn” is a two digit integer indicating the FORTRAN unit number. For
example, if the user is currently running under the shell profyaritcsh |, the required
sequence is:

% setenv FORO007 cards.dat

This causes the following FORTRAN statements to opards.dat ' on unit 7.

CALL EXNAME(7, FILENM, LN)
IF(LN.EQ.0) THEN IEXNAME returns a zero for LN if no ASSIGN
I'has been performed. Use the system default.
OPEN(7)
ELSE ! I've found an ASSIGN'd filename, use it.
OPEN(7, FILE=FILENM)
ENDIF

From the Bourne Shellbin/sh | the following sequence is required:

$ FORO0O7=cards.dat
$ export TERM

If no file has been assigned, a system default file name of thdddrrm , where 'hn”
is a one (if less than ten) or two digit integer indicating the FORTRAN unit number that
will be written.

Similarly, EXNAME looks for an environment variable of the form EXTnn. So that
% setenv EXTO5 hello

60

will cause the following call to return NAME="hello” and LN=5.
CALL EXNAME(-1, NAME, LN)

8.6.3 Interface to EXREAD
EXREAD will read fromstdin and automatically echo sidout

8.6.4 Source Code

The source code for the extension library for the Sun is stored in the SNLA Central File
System under node “/SUPES2_1/EXT_LIB.STX” in SNLA Standard Text format.

61

	1 INTRODUCTION
	2 INSTALLATION PROCEDURE
	2.1 VAX/VMS Installation Procedure
	2.1.1 Building SUPES
	2.1.2 Building the Test Programs
	2.1.3 Installing SUPES On Your VMS System

	2.2 General UNIX Installation Procedure
	2.2.1 Building SUPES
	2.2.2 Building the Test Programs
	2.2.3 Installing SUPES On Your UNIX System

	3 FREE FIELD INPUT
	3.1 Keyword/Value Input System
	3.2 Syntax Rules
	3.3 Free Field Input Routines
	3.3.1 External Input Routine (FREFLD)
	3.3.2 Internal Input Routine (FFISTR)
	3.3.3 Basic Examples

	3.4 Utility Routines
	3.4.1 Get Literal Input Line (GETINP)
	3.4.2 Strip Leading/Trailing Blanks (STRIPB)
	3.4.3 Process Quoted String (QUOTED)

	4 MEMORY MANAGER
	4.1 Indexing System
	4.2 Basic Routines
	4.2.1 Initialize (MDINIT/MCINIT)
	4.2.2 Define Dynamic Array (MDRSRV/MCRSRV)
	4.2.3 Delete Dynamic Array (MDDEL/MCDEL)
	4.2.4 Reserve Memory Block (MDGET/MCGET)
	4.2.5 Release Unallocated Memory (MDGIVE/MCGIVE)
	4.2.6 Obtain Statistics (MDSTAT/MCSTAT)
	4.2.7 Print Error Summary (MDEROR/MCEROR)
	4.2.8 Enable data initialization (MDFILL/MCFILL)
	4.2.9 Cancel Data Initialization (MDFOFF/MCFOFF)
	4.2.10 Basic Example

	4.3 Advanced Routines
	4.3.1 Rename Dynamic Array (MDNAME/MCNAME)
	4.3.2 Adjust Dynamic Array Length (MDLONG/MCLONG)
	4.3.3 Locate Dynamic Array (MDFIND/MCFIND)
	4.3.4 Compress Storage (MDCOMP/MCCOMP)
	4.3.5 Error Flag Query (MDERPT/MCERPT)
	4.3.6 Modify Error Count (MDEFIX/MCEFIX)
	4.3.7 Report Last Error (MDLAST/MCLAST)
	4.3.8 Enable Deferred Memory Mode (MDWAIT/MCWAIT)
	4.3.9 Execute Deferred Memory Requests (MDEXEC/MCE...
	4.3.10 Report storage information (MDMEMS/MCMEMS)

	4.4 Development Aids
	4.4.1 List Storage Tables (MDLIST/MCLIST)
	4.4.2 Print Dynamic Array (MDPRNT/MCPRNT)
	4.4.3 Debug Printing (MDDEBG/MCDEBG)

	5 EXTENSION LIBRARY
	5.1 User Interface Routines
	5.1.1 Get Today’s Date (EXDATE)
	5.1.2 Get Time of Day (EXTIME)
	5.1.3 Get Accumulated Processor Time (EXCPUS)
	5.1.4 Get Operating Environment Parameters (EXPARM...
	5.1.5 Get Unit File Name or Symbol Value (EXNAME)

	5.2 Utility Support Routines
	5.2.1 Convert String to Uppercase (EXUPCS)
	5.2.2 Prompt/Read/Echo Input Record (EXREAD)
	5.2.3 Evaluate Numeric Storage Location (IXLNUM)
	5.2.4 Evaluate Character Storage Location (IXLCHR)...
	5.2.5 Get/Release Memory Block (EXMEMY)

	5.3 Skeleton Library
	5.3.1 Skeleton Routine Specifications

	6 SUPPORT PROGRAMMER’S GUIDE
	6.1 Free Field Input
	6.1.1 Implementation Notes on FREFLD
	6.1.2 Test Program for FREFLD

	6.2 Memory Manager
	6.2.1 Table Architecture and Maintenance
	6.2.2 Non-ANSI FORTRAN Assumptions
	6.2.3 Standard FORTRAN Implementation
	6.2.4 Test Program

	6.3 Extension Library Implementation
	6.3.1 Implementation Notes for Modules
	6.3.2 Extension Library Test Program

	6.4 Installation Documentation Guidelines

	7 References
	8 SITE SUPPLEMENTS
	8.1 Site Supplement For 1500 VAX Cluster (VAX/VMS ...
	8.1.1 Linking
	8.1.2 Defining Unit/File or Symbol/Value for EXNAM...
	8.1.3 Interface to EXREAD
	8.1.4 Additional Comments Regarding SUPES2_1
	8.1.5 Source Code

	8.2 Site Supplement for SNLA CRAY-1/S (COS 1.11)
	8.2.1 Linking
	8.2.2 Defining Unit/File or Symbol/Value for EXNAM...
	8.2.3 Interface to EXREAD
	8.2.4 Known Problems
	8.2.5 Source Code

	8.3 Site Supplement for SNLA CRAY-1/S (UNICOS)
	8.3.1 Linking
	8.3.2 Defining Unit/File or Symbol/Value for EXNAM...
	8.3.3 Interface to EXREAD
	8.3.4 Known Problems
	8.3.5 Source Code

	8.4 Site Supplement For SNLA CRAY X-MP/24 (CTSS/CF...
	8.4.1 Linking
	8.4.2 Defining Unit/File or Symbol/Value for EXNAM...
	8.4.3 Interface to EXREAD
	8.4.4 Known Problems
	8.4.5 Source Code

	8.5 Site Supplement for SNLA Alliant FX/8 (Concent...
	8.5.1 Linking
	8.5.2 Defining Unit/File or Symbol/Value for EXNAM...
	8.5.3 Interface to EXREAD
	8.5.4 Source Code

	8.6 Site Supplement for SNLA Sun Workstations (Sun...
	8.6.1 Linking
	8.6.2 Defining Unit/File or Symbol/Value for EXNAM...
	8.6.3 Interface to EXREAD
	8.6.4 Source Code

	Table of Contents

