SAND92-2291 Distribution
Unlimited Release Category UC-705
Printed December 1992
| Updated March 17, 1997

APREPRO:
An Algebraic Preprocessor
for Parameterizing Finite
Element Analyses

Gregory D. Sjaardema
Solid and Structural Mechanics Department
Sandia National Laboratories
Albuguerque, New Mexico 87185

Abstract

Apreprois an algebraic preprocessor that reads a file containing both general
text and algebraic, string, or conditional expressions. It interprets the expres-
sions and outputs them to the output file along with the general text. The syntax
used inApreprois such that all expressions between the delimjtersd} are
evaluated and all other text is simply echoed to the outpufilepro con-

tains several mathematical functions, string functions, and flow control con-
structs. In addition, functions are included that, with some additional files,
implement a units conversion system and a material database lookup system.
Apreprowas written primarily to simplify the preparation of parameterized in-
put files for finite element analyses at Sandia National Laboratories; however,
it can process any text file that does not use the charggters

Intentionally Left Blank

Contents

I 11 0T [Fox 1o o [PPSR 7
2 SYNEAX ittt e e e et e e e e e e e e e e e e e eeennnnne 9
G I O 01T = | (0] £ TP 13
3.1 ArthmetiC OPEIAtOrSccooeiiieeeieieeeeeeee e e e 13
3.2 ASSIGNMENT OPEIALOIS ...eveeiiiiiiiiiiieee et e e e e e e e e e e e e e e e s e e e anaes 14
3.3 Relational OPEIraAtOrSuuuiiiiiiieieeeeeeiee et e e e e e e s 14
3.4 BO0O0IEAN OPEIALOISccciiiiiiiiiiiiiie ittt ettt e e e e e e e e e r e e e e e eeeas 14
R T 111 To IO 01T =1 (o] £ 15
4 Predefined VariabIesuuueiiiiii e 17
oI U o 1o £ PSP 19
5.1 Mathematical FUNCHONSccooiiiiiiiiiiiii e 19
5.2 StHNG FUNCHONS ..ouiiiiiiiiiii et e e e e e e e e e 21
5.3 Additional FUNCHIONScoeieieiiiieeeeeeees e e e e e e e e e e eees 22
6 UNitS CONVEISION SYSIEIM .uuiiiiiiiiiii e e e e e e e e e e e e e e s 25
(G M 1 1 0o (3 {ox 1o T o IO PPPPPPPUPPPPR 25
6.2 Units Conversion Implementationccceeeeeeieiiiiiiiieeeeeee e 26
8.3 U SAQE . iiiiiiiiii ittt a e aa 28
6.4 Additional COMMENTSccoiiiiiiiiiiiiiie e e e e e e eeaeanees 30
7 Material Database ACCESS SYSIEMuuiiiiiiiiiiiiiiie e 33
7.1 Overview of the MATS SYSIEMcccooiiiiieeeer e 33
7.2 Implementation of the Material Database Access Routinescccoeee.... 35
7.3 Code Template FileS:uuiiiiiiiiiiiiee e 35
7.4 Material FIlS:eeeiiiiiiiiiiiiii e 37
7.5 Additional COMMENTSooiiiiiiiiiiiiie e e e e e eeeeeeeenees 38
8 Error, Warning, and Informational MeSSagesccccceeeeeeeeievieeeeeeiiiiiiineennn 41
O EXAMPIES ..o e ——————————— 43
9.1 Mesh Generation INPUt Fileuiiiiiiiii e 43
S I |V = Tt {0 B = 1 0] o] =SS 44
9.3 Command Line Variable ASSIGNMENTccouuiiiiiiiiiiiiii e e e 44
9.4 LOOP EXAMPIE .. 45
9.5 Units and Material Database Access EXamplecccccoviviiiiiiiiiiiiciiieeeeenn. 45
LO RETEIENCES ... e e e e e et e e e et bbb as 49
N (o1 B | 1[0 o PP 51
B Unit System Defined Variablesuiiiiiiiiii e 53

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8:
Table 9:
Table 10:

Figure 1.

ArthmetiC OPEIatOrSoooiiiiiiiiii e 13
ASSIGNMENT OPEIALOIS...cciiiieeeieeieiei ettt e e e e e e e e e e e 14
Relational OPEratorsccooviiiiiiiiiie e 14
(o]0 [[or= 1 M@ 01T = 1o] £ T 15
Predefined Variables............ooor 17
Effect of various output format specifications..............ccccccccieeennnnn. 17
Mathematical FUNCHONS.........uuuuiiiiiiiee e 19
Units Systems and Corresponding Output Format--Metric................. 25
Units Systems and Corresponding Output Format--English 26
Defined Units Variables............oooiiiiiiiiiii e 53
Figures
Schematic of Proposed MATS Database System.............ccceevvvvvvnnnnns 34

1 Introduction

Apreprois an algebraic preprocessor that reads a file containing both general text and alge-
braic expressions. It echoes the general text to the output file, along with the results of the
algebraic expressions. The syntax usedipreprois such that all expressions between the
delimiters{ and} are evaluated and all other text is simply echoed to the output file. For
example, if the following lines are input Aprepro

$ Rad = {Rad = 12.0}

Point 1 {x1 = Rad * sind(30.)} {y1 = Rad * cosd(30.)}

Point 2 {x1+10.0} {y1}

The output would look like:

$ Rad =12
Point 1 6 10.39230485
Point 2 16 10.39230485

In this example, the algebraic expressions are specified by surrounding thgnanah
and the functionsind() andcosd() calculate the sine and cosine of an angle given in
degrees.

Apreprohas been used extensively in the past two years to prepare parameterized files for
finite element analyses using the Sandia National Laboratories SEACAS “system

recent addition of the units conversion capability and the material database access routines
have greatly increased the usabilityAgrepro. Apreprocan also be used for non-finite
element applications such as a powerful calculator and a general text processor for any file
that does not use the delimit¢rand} .

Apreprois written in thec language. TheiSON? andrFLEX3 programs are used to generate
the parsing and lexical analysis subroutines, respectively. The initial implementation of
Apreprowas based on thefcalc example in théISON manual. Aprepro has been ported

to severalUNiX systems including Hewlett Packard HP-UX, Cray Research Unicos, Sun
Microsystems SunOS, Tenon MachTen, Digital Equipment Ultrix; and tounox-
systems including VAX VMS, Macintosh, and Amiga.

The remainder of this document is organized as follows:
 Section 2 documents the syntax recognize@gprq
« Sections 3, 4, and 5 describe the operators, predefined variables, and functions,
* Section 6 describes the units conversion system,
» Section 7 describes the material database support routines,
* Section 8 describes the error messages outputAmmeprg and
» Section 9 presents some exampledmeprousage.
* Appendix A documents the command line optionsApreprg and
» Appendix B lists the defined units abbreviations.

Intentionally Left Blank

2 Syntax

Apreprois in one of two states while it is processing an input file, either echoing or pars-
ing. In theechoingstate Apreproechoes every character that it reads to the output file. If it
reads the character it enters thg@arsingstate. In the parsing statepreproreads charac-

ters from the input file and identifies the characters as tokens which ftarcbhen names
variables numbersoperators or delimiters WhenApreproencounters the characterit

tries to interpret the tokens as an algebraic, string, or conditional expression; if it is suc-
cessful, it prints the value to the output file; if it cannot evaluate the expression, it prints
the message:

Aprepro: ERR: parse error (filename | line line#)
to the terminal and prints the value O to the output file.

The rules thatAprepro uses when identifying functions, variables, numbers, operators,
delimiters, and expressions are described below:

* Functions: Function names are sequences of letters and digits and underscores
() that begin with a letter. The function’s arguments are enclosed in parentheses.
For example, in the linetan2(a,1.0) , atan2 is the function name, ardand
1.0 are the arguments. See section 5 on page 19 for a list of the available functions
and their arguments.

* Variables: A variable is a name that references a numeric or string value. A vari-
able is defined by giving it a name and assigning it a value. For example, the ex-
pressiora = 1.0 defines the variable with the numeric value.o ; the expres-
sionb="A string" defines the variable with the valueA string” . Variable
names are sequences of letters, digits, and underscores (_) that begin with either
a letter or an underscore. Variable names cannot match any function name and
they are case-sensitive, that #&c de and AbC_dE are two distinct variable
names. A few variables are predefined, these are listed in section 4 on page 17.

Any variable that is not defined is equal to 0. A warning message is output to the
terminal if an undefined variable is used, or if a previously defined variable is
redefined.

* Numbers : Numbers can be integers likes4, decimal numbers like234 , or in
scientific notation like1.234E-26 . All numbers are stored internally as floating
point numbers.

e Strings: Strings are sequences of numbers, characters, and symbols that are de-
limited by either single quotesh(s is a string’) or double quotesthis
is another string"). Strings that are delimited by one type of quote can include

* Error messages are printed to standard errotJ®IX systems they can be redirected to a file
using your shells redirection syntax. See the man page for your shell for more information.

T If the variable name begins with an underscore, no warning is output when the variable is
redefined. Warnings can be turned off with #\&or +warning option.

the other type of quote. For examgl®his is a valid "string"’} . Strings
delimited by single quotes can span multiple lines; strings delimited by double
guotes must terminate on a single line or a parsing error message will be issued.

* Operators: Operators are any of the symbols defined in section 3 on page 13. Ex-
amples are + (addition), - (subtraction), * (multiplication), / (division), = (assign-
ment), and * (exponentiation)

* Delimiters: The delimiters recognized B®preproare: the comma | which sep-
arates arguments in function lists, the left curly bragevhich begins an expres-
sion, the right curly brace (}) which ends an expression, the left parenfhesis
which begins a function argument list, the right parenthestsich ends a func-
tion argument list, the single quotg (vhich delimits a multi-line string, and the
double quote”() which delimits a single-line string.

* Expressions: An expression consists of any combination of numeric and string
constants, variables, operators, and functions. Four types of expressions are rec-
ognized inAprepra algebraic, string, relational, and conditional.

* Algebraic Expressions: Almost any validFORTRAN or C algebraic expression
can be recognized and evaluatedNpyepra An expression of the foraxb+10/
37.5 will evaluate the expression on the right-hand-side of the equals sign, print
the value to the output file, and assign the value to the vaaaBle expression
of the formb+10/37.5 will evaluate the expression and print the value to the out-
put file. If you want to assign a value to a variable without printing the result, the
expression must be inside BAHO(ON|OFF) block (see page 23). Variables can
also be set on the command line prior to reading any input files using the
'var=val' syntax. An example of this usage is given in section 9.2 on page 44.
Only a single expression is allowed within thedelimiters. For exampléx =
sqrt(y*2 + sin(z))} , {x=y=z} , and{x=y} {a=z} are valid expressions, but
{x=y a=z} is invalid because it contains two expressions within a single set of
delimiters.

* String Expressions : Apreprohas very limited string support. The only supported
operations are assigning a variable equal to a stiagrgis is a string")
or a function that returns a string, and concatenating two strings into another string
(a ="Hello" // " " /I "World").

* Relational Expressions: Relational expressions are expressions that return the re-
sult of comparing two expressions. A relational expression is either true or false.
Relational expressions can only be used on the left-hand side of a conditional ex-
pression. A relational expression is simply two expressions of any kind separated
by a relational operator (See “Relational Operators” on page 14.)

* Conditional Expressions : Aprepro recognizes a conditional expression of the
form:

relational_expression ? true exp : false exp

whererelational _expressiortan be any valid relational expression, and_exp

10

andfalse_expare two algebraic expressions. If the relational expression is true,
then the result ofrue_expis returned, otherwise the result faflse_expis
returned. For example, if the following command were entered:

a = (sind(20.0) > cosd(20.0) ? 1 : -1)

then,a would be assigned the value since the relational expression to the left

of the question mark is false. Bdtlue expandfalse_expare always evaluated
prior to evaluating the relational expression. Therefore, you should not write an
equation such as

sind(20.0*a)>cosd(20.0*a) ? a=sind(20.0) : a=cosd(20.0)

since the value of can change during the evaluation of the expression. Instead,
this equation should be written as:

a = (sind(20.0*a)>cosd(20.0*a) ? sind(20.0) : cosd(20.0))

11

12

3 Operators

The operators recognized Byreproare listed below. The letteesandb can represent
variables, numbers, functions, or expressions unless otherwise noted. The tables below
also list the precedence and associativity of the operators. Precedence defines the order in
which operations should be performed. For example, in the expression:

3*4+6/2

the multiplications and divisions are performed first, followed by the addition because
multiplication and division have higher precedence than addition. The precedence is listed
from 1 to 14 with 1 being the lowest precedence and 14 being the highest.

Associativity defines which side of the expressions should be simplified first. For example
the expressiors + 4+5 would be evaluated &3+ 4) + 5 for left associativity, the
expressiorm=b/c would be evaluated as= (b / c) for right associativity.

3.1 Arithmetic Operators

Arithmetic operators combine two or more algebraic expressions into a single algebraic
expression. These have obvious meanings except for the pre- and post- increment and

Table 1. Arithmetic Operators

Syntax Description Precedence Associativity
at+b Addition 9 left

a-b Subtraction 9 left

a*b, a~b Multiplication 10 left

a/b Division 10 left

a’b, a**b Exponentiation. 12 right
a%b Modulus, (remainder) 10 left
++a, at++ Pre- and Post-increment a 13 left
--a, a-- Pre- and Post-decrement a. 13 left

decrement operators. The pre-increment and pre-decrement operators first increment or
decrement the value of the variable and then return the value. For exaraple, ifthen

b=++a Will set bothb anda equal to2. The post-increment and post-decrement operators
first return the value of the variable and then increment or decrement the variable. For
example, ifa=1 , thenb=a++ will setb equal taL anda equal t2. The modulus operator
%calculates the integer remainder. That is both expressions are truncated an integer value
and then the remainder calculated. Seenthe function in section 5.1 on page 19 for the

13

calculation of the floating point remainder. The tilde characterused as a synonym for
multiplication to improve the aesthetics of the unit conversion system (see section 6 on
page 25). Itis more natural for some users to 1gpmetre thani2*metre .

3.2 Assignment Operators

Assignment operators combine a variable and an algebraic expression into a single alge-
braic expression, and also set the variable equal to the algebraic expression. Only variables
can be specified on the left-hand-side of the equal sign.

Table 2. Assignment Operators

Syntax Description Precedence Associativity
a=b The value of 'a’ is set equal to 'b’ 1 right
a+=b The value of ‘a‘ is setequaltoa + p 2 right
a-=b The value of ‘a’ is set equal to a - [2 right
a*=b The value of ‘a’ is setequaltoa* b 3 right
a/=b The value of ‘a’ is set equal to a / K 3 right
a’=b The value of ‘a’ is set equal w 4 right
a**=b The value of ‘a‘ is set equal &% 4 right

3.3 Relational Operators

Relational operators combine two algebraic expressions into a single relational expres-
sion. Relational expressions and operators can only be used before the questidt) mark (
in a conditional expression.

Table 3. Relational Operators

Syntax Description Precedence Associativity
a<b true if ‘a’ is less than ‘b’ 8 left
a>b true if ‘a‘ is greater than ‘b’ 8 left
a<=b true if ‘a‘ is less than or equal to ‘b 8 left
a>=bhb true if ‘a’ is greater than or equal to ‘b’ 8 left
a== true if ‘a' is equal to ‘b 8 left
al=b true if ‘a‘ is not equal to ‘b’ 8 left

3.4 Boolean Operators

Boolean operators combine one or more relational expressions into a single relational
expression. Ifa andlb are two relational expressions, then:

14

Table 4. Logical Operators

Syntax Description Precedence Associativity
la||Ib true if either ‘la‘ or ‘Ib* are true. 6 left
la && Ib true if both ‘la’ and ‘Ib‘ are true. 7 left
lla true if ‘la‘ is false. 11 left

3.5 String Operators

The only supported string operator at this time is string concatenation which is denoted
by /1 . If a="Hello" andb ="world" , then:

c=all""Ilb

setsc equal to'Hello World". Concatenation has precedence 14 and left associativity.

15

16

4 Predefined Variables

A few commonly used variables are predefinedpmepra These are listed below. The
default output format is specified as é&anguage format string, see yautanguage docu-
mentation for more information. The default format and comment variables are defined
with a leading underscore in their name so they can be redefined without generating an
error message.

Table 5. Predefined Variables

Name Value Description

Pl 3.14159265358979323846 11

PI_2 1.57079632679489661923 1/ 2

SQRT2 1.41421356237309504880 ./2

DEG 57.2957795130823208768 180/t degrees per radian

RAD 0.017453292519943295761/180 radians per degree

E 2.71828182845904523536 base of natural logarithm

GAMMA 0.57721566490153286060 euler-mascheroni corstant

PHI 1.61803398874989484820 golden ratids + 1)/ 2

VERSION Varies, string value current version of Aprepro

_FORMAT "%.10g" default output format

C "$" default comment character
1The euler-mascheroni constant is defined as the Iimlit*o% +.+ %—Iogs ass

approaches infinity.

Note that the output format is used to output both integers and floating point numbers.
Therefore, it should use the %g format descriptor which will use either the decimal (%d),
exponential (%e), or float (%f) format, whichever is shorter, with insignificant zeros
suppressed. The table below illustrates the effect of different format specifications on the
output of the variablel and the value 1.0 . See the documentation of gaampiler for

more information. For most cases, the default value is sufficient.

Table 6. Effect of various output format specifications
Format Pl Output 1.0 Output
%.10g 3.141592654 1
%.10e 3.1415926536e+00 1.0000000000e+(0
%.10f 3.1415926536 1.0000000000

17

Table 6. Effect of various output format specifications

Format P1 Output 1.0 Output

%.10d 1413754136 0000000000

The comment character should be set to the character that the program which will read the
processed file uses as a comment character. The default value of "$" is the comment
character used by the SEACAS codes at Sandia National Laboratories. dtamand

line optiorf automatically changes the value of the comment variable to match the
character specified on the command line.

* See appendix A on page 51.

18

5 Functions

Several mathematical and string functions are implement@grepra To cause a func-
tion to be used, you enter the name of the function followed by a list of zero or more argu-
ments in parentheses. For example

sgrt(min(a,b*3))

uses the two functiongrrt() andmin() . The arguments andb*3 are passed tain() .
The result is then passed as an argumesdrt9 . The functions impreproare listed
below along with the number of arguments and a short description of their effect.

5.1 Mathematical Functions
The following mathematical functions are availablé&prepra

Table 7. Mathematical Functions

Syntax Description

abs(x) Calculates the absolute value ofi X.

acos(x) Calculates the inverse cosine of x, returns radians
acosd(x) Calculates the inverse cosine of x, returns degrees
acosh(x) Calculates the inverse hyperbolic cosine of x

asin(x) Calculates the inverse sine of x, returns radians
asind(x) Calculates the inverse sine of x, returns degrees
asinh(x) Calculates the inverse hyperbolic sine of x

atan(x) Calculates the inverse tangent of x, returns radians
atan2(y,x) Calculates the inverse tangent of y/x, returns radians
atan2d(x) Calculates the inverse tangent of x, returns degrees
atand(y,x) Calculates the inverse tangent of y/x, returns degrees
atanh(x) Calculates the inverse hyperbolic tangent of x

ceil(x) Calculates the smallest integer not less than x
€os(x) Calculate the cosine of x, with x in radians

cosd(x) Calculate the cosine of x, with x in degrees

cosh(x) Calculates the hyperbolic cosine of x

d2r(x) Converts degrees to radians.

dim(x,y) Calculates x - min(x,y).

dist(x1,y1, x2.y2) Calculates ,[((X; - X)° + (y; —)?)

19

Table 7. Mathematical Functions

Syntax Description

exp(x) Calculate” (Exponential)

floor(x) Calculates the largest integer not greater than x.
fmod(x,y) Calculates the floating-point remainder of x/y.
hypot(x,y) Calculatesm

int(x), [X] Calculates the integer part of x truncated toward O.
Igamma(x) Calculateslog(Tl (x))

In(x), log(x) Calculates the natural (base e) logarithm of x.
logpl(x) Calculates log(1+x)

log10(x) Calculates the base 10 logarithm of x.

max(x,y) Calculates the maximum of x and y.

min(x,y) Calculates the minimum of x and y.

polarX(r,a) Calculatesr x cog(@) , ais in degrees
polarY(r,a) Calculatesr x sin(a) , ais in degrees

r2d(x) Converts radians to degrees.

rand(xl,xh) Calculates a random number between x| and xh.
sign(x,y) Calculatesx x sgn(y)

sin(x) Calculates the sine of x, with x in radians.
sind(x) Calculates the sine of x, with x in degrees.
sinh(x) Calculates the hyperbolic sine of x

sqrt(x) Calculates the square root of x.

tan(x) Calculates the tangent of x, with x in radians.
tand(x) Calculates the tangent of x, with x in radians.
tanh(x) Calculates the hyperbolic tangent of x.

julday(mm, dd, yy)

Calculates the julian day corresponding to mm/dd/yy.

juldayhms(mm, dd, yy, Calculates the julian day corresponding to mm/dd/yy
hh, mm, ss) hh:mm:ss
Vangle(x1,yl, x2,y2) Calculates the angle between the vexjory,] ang
Xoi +Y,] . returns radians.
Vangled(x1,yl, x2,y2) Calculates the angle between the veqﬁﬁ- y1] ang

X5i +Y,] . returns degrees.

20

5.2 String Functions

A few useful string functions are available:

tolower(svar)

toupper(svar)

tostring(x)

Translates all uppercase charactersvisx to lowercase. It modifiesvar
and returns the resulting string.

Translates all lowercase charactesvar to uppercase. It modifievar
and returns the resulting string.

Returns a string representation of the numerical varaibléne variable is
unchanged.

execute(svar) svar is parsed and executed as if it were a line read from the input file. For

rescan(svar)

getenv(svar)

get_word(n,svar,del)

word_count(svar,del)

strtod(svar)

error(svar)

example, ifsvar = "b=sqrt(25.0)" , then{execute(svar)}

returns the value 5 and séts 5 . The expressioavar is enclosed in
delimiters prior to being executed and it must be a valid expression or an
error message will be printed.

Similar toexecute(svar) , except thasvar is not enclosed in delimiters
prior to being executed. For examplesvar = "Point {1+5}

{sqrt(5)} {sqart(6)}" , then{rescan(svar)} would print:

Point 6 2.236067977 2.449489743 . The difference betweexe-
cute(svl) andrescan(sv2) is thatsvl must be a valid expression,
butsv2 can contain zero or more expressions.

Returns a string containing the value of the environment vasahle. If the
environment variable is not defined, an empty string is returned.

Returns a string containing théh word ofsvar . The words are separated
by one or more of the characters in the string varidéle

Returns the number of wordssmar . Words are separated by one or more of
the characters in the string variadk

Returns a double-precision floating-point number equal to the value repre-
sented by the character string pointed tegr .

Outputs the stringvar to stderr and then terminates the code with an error
exit status.

The following example shows the use of some of the string functions. The lines beginning

with the string "Output>"
previous line.

show the output froAprepro resulting from entering the

{tl = "ATAN2"} {t2 = "(0, -1)"}
Output> ATAN2 (0, -1)

{t3 = tolower(t1//t2)}
Output> atan2(0, -1)

...The variable t3 is equal to the string atan2(0, -1)

{execute(t3)}
Output> 3.141592654
...The result is the

same as executing {atan2(0, -1)}

21

This is admittedly a very contrived example; however, it does illustrate the workings of

several of the functions. In the first example, an expression is constructed by
concatenating two strings together and converting the resulting string to lowercase. This
string is then executed and simply prints the result of evaluating the expression.

The following example uses the rescan function to illustrate a basic macro capability in
Aprepra The example calculates the coordinates of eleven points (Pointl ... Pointll)
equally spaced about the circumference of a 180 degree arc of radius 10.

{ECHO(OFF)Knum = 0} {rad = 10} {nintv = 10} {nloop = nintv + 1}
{line = 'Define {"Point"//tostring(++num)}, {polarX(rad, (num-
1) * 180/nintv)} {polarY(rad, (num-1)*180/nintv)}'} {ECHO(ON)}

{loop(nloop)}
{rescan(line)}

{endloop}

Output:

Define Point1, 10 0

Define Point2, 9.510565163 3.090169944
Define Point3, 8.090169944 5.877852523
Define Point4, 5.877852523 8.090169944
Define Point5, 3.090169944 9.510565163
Define Point6, 6.123233765e-16 10
Define Point7, -3.090169944 9.510565163
Define Point8, -5.877852523 8.090169944
Define Point9, -8.090169944 5.877852523
Define Point10, -9.510565163 3.090169944
Define Pointl11, -10 1.224646753e-15

Note the use of theCHO(OFFION) block to suppress output during the initialization
phase, and the loop construta automatically repeat the rescan line. The varialtes
converted to a string after it is incremented and then concatenated to build the name of the
point. In the definition of the variablme , single quotes are first used since this is a
multi-line string; double quotes are then used to embed another string within the first
string. To modify this example to calculate the coordinates of 101 points rather than
eleven, the only change necessary would be tis&t100}

5.3 Additional Functions

* File Inclusion: Apreprocan read input from multiple files using tinelude()
andcinclude() functions. If a line of the form:

{include(" filename ")}
{include(string_variable)}

is read,Apreprowill open and begin reading from the file&ename . A string
variable can be used as the argument instead of a literal string value. When the end

* Described in section 5.3 on page 22
t Described in section 5.3 on page 22

22

of the file is reached, it will be closed aAdreprowill continue reading from the
previous file. The difference betwemnlude andcinclude is that iffilename

does not existpclude will terminateApreprowith a fatal error, butinclude

will just write a warning message and continue with the current file. The
cinclude function can be thought of axzanditional includethat is, include the

file if it exists. Multiple include files are allowed and an included file can also
include additional files. Approximately 16 levels of file inclusion can be used.
This option can be used to set variables globally in several files. For example, if
two or morenput files share common points or dimensions, those dimensions can
be set in one file that is included in the other files.

If ECHO(OFF)is in effect during in an included fileCHO(ON) will automatically
be executed at the end of the file.

 Conditionals: Portions of an input file can be conditionally processed through

the use of th@fdef(variable)} or{Ifndef(variable)} constructs. The syn-
tax is:
{Ifdef(variable)}
...Lines processed ifvariable’ is not equal to O
{Else}
...Lines processed ifvariable’ is equal to 0 or undefined
{Endif}
{Ifndef(variable)}
...Lines processed ifvariable’ is equal to 0 or undefined
{Else}
...Lines processed ifvariable’ is not equal to O
{Endif}

The{Else} is optional. Note that Wariable is undefined, its value is equal to
zero.Ifdef constructs can be nested up to approximately 16 levels. A warning
message will be printed if improper nesting is detedie@f(variable)} ,
{Ifndef(variable)} , {Else} , and{Endif} are the only text parsed on a line.
Text following these on the same line is ignored.

* Loops: Repeated processing of a group of lines can be controlled with the
{loop(control)} ,{endloop} commands. The syntax is:

{loop(variable)}
...Process these lin€gariable’ times
{endloop}

Loops can be nested. A numerical variable or constant must be specified as the
loop control specifier. You cannot use an algebraic expression such as
{loop(3+5)}

* ECHO: The printing of lines to the output file can be controlled through the use
of the{ECHO(OFF)} and{ECHO(ON)} commands. The syntax is:

{ECHO(OFF)}

23

...These lines will be processed, but not printed to output
{ECHO(ON)}

...These lines will be both processed and printed to output.

ECHowill automatically be turned on at the end of an included file. The commands
ECHOandNOECHO are synonyms fOECHO(ON) andECHO(OFF).

* VERBATIM: The printing of all lines to the output file without processing can
be controlled through the use of Y#ERBATIM(ON)} {VERBATIM(OFF)} com-
mand. The syntax is:

{VERBATIM(ON)}

...These lines will be printed to output, but not processed
{VERBATIM(OFF)}

...These lines will be printed to output and processed

NOTE: there is a major difference between H@O/NOECHOCOMmMands, the
Ifdef/Endif commands, and theERBATIM(ON|OFF) commands:

ECHO(ON|OFF) Lines processed, but not printedelEHO(OFF)
Ifdef/Endif Lines not processed or printed iflindef block
VERBATIM(ON|OFF) Lines not processed, but are printed

 Qutput File Specification: Theoutput function can be used to change the file to
which Aprepro is outputting the processed data. The syntaxtist(" file-
namé") , wherefilename is the name of the new output file. A string variable can
be used as the function argument.The previous output file is closed. An error mes-
sage is written and the code terminates if the file cannot be opened.

24

6 Units Conversion System

Although great effort has been expended to ensure that the units conversion
system is accurate and consistent, the author does not make any warranty
expressed or implied, or assume any liability or responsibility for the use of this

software. If any errors are discovered in this software, please contact the author.

6.1 Introduction

The units conversion systemApreprois implemented as a set of files that define several
variables that are abbreviations for unit quantities. For example, if the output format for the
current unit system was inches, the variate would have the value 12. Therefore, an
expression such asfoot would be equal to 96 which is the number of inches in 8.feet

Files have been defined for seven consistent units systems including four metric based
systemssi, cgs, cgs-evandshock;and three english-based systemdbf-s, ft-Ibf-s, and
ft-Ilom-s The output units for these unit systems are shown in Table 8 (metric) and Table 9
(english). A list of the defined units abbreviations is given in Table 10.

In addition to the definition of the conversion factors, several string variables are also
defined which describe the output format of the current units system. For example, the
string variabledout defines the output format for density units. For itidbf-secunits
systemgdout ="Ibf-sec”2/in"4 " which is the output format for densities in this system.
The string variables can be used to documentAjrepro output. The string variable
names are listed in the last column of Table 8 and Table 9.

Table 8: Units Systems and Corresponding Output Format--Metric

Quantity Si cgs cgs-ev shock string
Length metre centimetre centimetre centimetre | lout
Mass kilogram gram gram gram mout
Time second second second micro-sec | tout
Temp. kelvin kelvin eV kelvin Tout
Velocity metre/sec cm/sec cm/sec cm/usec vout
Accel. metre/sec”2| cm/sec”2 cm/sec”2 cm/usec”2 | aout
Force newton dyne dyne g-cm/usec”2 | fout
Volume metre”3 cm”3 cm”3 cm”3 Vout
Density kg/m”3 glcc gl/cc glcc dout

* This can also be written @&-foot since the symbot has been defined to be the
multiplication operator.

25

Table 8: Units Systems and Corresponding Output Format--Metric

Quantity si cgs cgs-ev shock string
Energy joule erg erg g-cm”2/usec"3 eout
Power watt erg/sec erg/sec g-cm”2/usec’t4Pout
Pressure pascal dyne/cm”2| dyne/cm”2 Mbar pout

Table 9: Units Systems and Corresponding Output Format--English

Quantity in-lbf-s ft-Ibf-s ft-lbm-s string
Length inch foot foot lout
Mass Ibf-sec”2/in slug pound-mass | mout
Time second second second tout
Temp. rankine rankine rankine Tout
Velocity inch/sec foot/sec foot/sec vout
Accel. inch/sec"2 foot/sec”2 | foot/sec”2 | aout
Force pound-force pound-forge poundal fout
Volume inch”3 foot"3 foot"3 Vout
Density Ibf-sec”2/in™4 slug/ft"3 lbm/ft"3 dout
Energy inch-Ibf foot-Ibf ft-poundal eout
Power inch-lbf/sec foot-Ibf/seq ft-poundal/secPout
Pressure Ibf/in2 Ibf/ftr2 poundal/ft*2 | pout

The units definitions are accessed throughuiiie function inAprepra
{Units(" unit_system ")}

whereunit_system is one of the strings listed in the first row of the previous two tables.
This will search the standard locations on your system for the correct files to include.

6.2 Units Conversion Implementation

The units conversion system Apreprois implemented simply as a set of files that are
selectively included by a function call Aprepra There are two types of files used. The
first file type is a header file which defines the base units (metre, second, kg, radian, and
kelvin) in terms of the desired output formats, and the output format string variables (lout,
mout, ...). There is a different header file for each unit systeminTlfes header file

is shown below as an example:

{ C_} This is the in-Ibf-s units file: inch, sec, Ibf

26

{_C_} Outputs:

{{C_} Time: {tout = “second”}

{_ C_} Length: {lout="inch”}

{_C_} Accel {aout = “in/sec"2"}
{_C_} Mass: {mout = “Ibf-sec"2/in"}
{_C_} Force: {fout = “Ibf"}

{_C_} Velocity: {vout="in/sec”}

{_C_} Volume: {Vout="in"3"}

{_C_} Density: {dout = "Ibf-sec”2/in"4"}
{_C_} Energy: {eout="inch-Ibf’}
{C_} Power: {Pout = “inch-Ibf / sec™}
{_C_} Pressure: {pout="psi’}

{{C_} Temp: {Tout = “degR"}

{_C_} Angular: {Aout = “radian”}

{C}

{_ C_}1meter ={m =1/ 2.54e-2} {lout}

{_ C_} 1 second = {sec = 1} {tout}
{{C}1kg ={kg=1/4.5359237e-1/(9.806650*m/sec”2)} {mout}
{_ C_}1 kelvin = {degK = 1.8} {Tout}

{_ C_}1radian = {rad = 1} {Aout}

Note that this file defines the output units string variables at the top of the file and then

defines the base units in terms of the output units at the bottom of the file. This is the only
file that must be created to implement a new units system. The name of the header file
matches the name of the units system and it must be all lowercase.

The second file is called tlenversion file. This file contains the equations defining the
different units in terms of the base units. This is the only file that must be changed to add a
new unit abbreviation to the system unless a new base unit is added, in which case all of
the files must be modified. A short excerpt of this file is shown below:

{ C_H{ C_H C_} Length (L)

{ C_} 1 Meter= {meter = metre = m} {lout}

{ C_}1lcm ={cm = centimeter = centimetre = m / 100} {lout}

{C}1mm ={mm = millimeter = millimetre = m / 1000} {lout}

{ C_}1um ={um = micrometer = micrometre = m/ 1e6} {lout}

{_C }1km ={km = kilometer = kilometre = 1000 * m} {lout}

{ C_} 1 foot = {ft = foot = .3048 * m} {lout}

{_C_} 1 mile = {mi = mile = ft * 5280} {lout}

{ C_}1lyard = {yd =yard = ft * 3} {lout}

{_C_}1inch = {in =inch = ft/ 12} {lout}

{ C_}1 mil ={mil =inch/1000} {lout}

This segment is the portion of the conversion file which defines the length conversions. The
expressiof _C_} atthe beginning of each line of the header and conversion files is a string
variable that is given the current value of the comment character. In this way, the files can
be written in a generic format that can be used as input for several codes. Each expression
in the file defines a unit abbreviation in terms of a previously defined unit. For example,
the third line of the file defines the abbreviatiams centimeter , andcentimetre in

terms of thenetre which is a base unit. The eighth line of the file defines the abbreviations
mile andmi in terms of the foot which is earlier defined in terms of the meter. For ease of

27

verification of the units files, they are written in such a way that the output is somewhat
self-explanatory, for example, if the Sl system is being used, the above lines would result
in the following output:

$$$ Length (L)

$ 1 Meter =1 meter
$1cm = 0.01 meter
$1mm =0.001 meter
$1um = 1e-06 meter
$1km = 1000 meter

$ 1 foot = 0.3048 meter

$ 1 mile = 1609.344 meter
$ 1 yard = 0.9144 meter

$ 1 inch = 0.0254 meter

$ 1 mil = 2.54e-05 meter

which is more understandable than if a bunch of numbers were output. The conversion
expressions in this file were obtained from References 6, 7, 8, and 9.

WhenApreproprocesses the function cé@linits("unit_system")} , it first searches for

the requested header file (which has the same name as the unit system) in the directories
defined by the environment variatMaATSPATHOr the default location MMATSPATHS not

defined. The first matching file is used. It then searches for the conversion file in the same
directories. Units files other than those currently supported can be used by modifying the
environment variabl&ATSPATHFor example the following C-shell command will cause
Apreproto first search the current directory, then your mats subdirectory, and finally the
default units directory for the specified units system files:

setenv MATSPATH ".:~/:/usr/local/eng_sci/mats”

The units files must be in a directory calleds under the directories specified in the
MATSPATHenvironment variable Therefore, it is possible to have a personal copy of a
header file to define a new unit system and still use the global conversion file.

The units conversion files are in the SEACGA®de management system which is
maintained by CV8. CVS maintains a complete change log and the history of previous
changes so that traceability is maintained.

6.3 Usage

The following example illustrates the basic usage of the units conversion utfiyepra

$ Aprepro Units Utility Example
$ {ECHO(OFF)}
... Turn off echoing of the conversion factors
$ {Units(“shock”)}
...Select the shock units system
$ NOTE: Dimensions - {lout}, {mout}, {dout}, {pout}

*This is done so that the entire system (units conversion and material database ac-
cess routines) can use a single environment variable.

28

... This will document what quantities are used in the file after it is run through Aprepro
${lenl = 10.0 * inch}

...Define a length in an english unit (inches)
$ {len2 = 12.0~inch}

... ~is synonym for * (multiplication)

Material 1, Elastic Plastic, {1890~kgpm3} $ {dout}

Youngs Modulus = {28.3e6~psi}

Yield Stress = {30~ksi}

...Define the density and material parameters in whatever units they are available

End
Point 100 {0.0} {0.0}
Point 110 {len1} {0.0}
Point 120 {len1} {len2}
Point 130 {0.0} {lenl}

The output from this example input file is:

$ Aprepro ($Revision: 1.36 $) Fri Oct 23 13:32:42 1992
...QA header written by Aprepro
$ Aprepro Units Utility Example
$ NOTE: Dimensions - cm, gram, g/cc, Mbar
...The documentation of what quantities this file uses
$25.4
$30.48

Material 1, Elastic Plastic, 1.89 $ g/cc
Youngs Modulus = 1.951216314
Yield Stress =0.002068427188
...All material parameters are now in consistent units
End
Point 100 0 O
Point 110 25.4 0
Point 120 25.4 30.48
Point 130 0 25.4
...Lengths have all been converted to centimetres

The same input file can be used to output in Sl units simply by changing Units command
from shock tosi . The output in Sl units is:

$ Aprepro ($Revision: 1.36 $) Fri Oct 23 13:33:22 1992

$ Aprepro Units Utility Example

$ NOTE: Dimensions - meter, kilogram, kg/m"3, Pa
...Quantities are now output in standard Sl units

$

$0.254

$0.3048

Material 1, Elastic Plastic, 1890 $ kg/m"3
Youngs Modulus = 1.951216314e+11
Yield Stress =206842718.8

End

Point100 0 O

Point 110 0.254 0

29

Point 120 0.254 0.3048
Point 130 0 0.254
...Lengths have all been converted to metres

6.4 Additional Comments

A few additional comments and warnings on the use of the units system are detailed below.
* Omitting the{ECHO(OFF)} line prior to thelUnits(“unit_system”)} function
will print out the contents of the units header and conversion files. Each line in the
output will be preceded by the current comment character whichyisdefault.
A few lines from then-lbf-s units file are shown below:

$ Aprepro ($Revision: 1.36 $) Fri Oct 23 13:35:02 1992
$ This is the in-Ibf-s units file: inch, sec, Ibf

$ Outputs:

$ Time: second

$ Length: inch

$ Accel: in/sec’2

$ Mass: Ibf-sec”2/in
$ Force: Ibf

$ Velocity: in/sec

$ Volume: in"3

$ Density: Ibf-sec”2/in™4
$ Energy: inch-lbf

$ Power: inch-lbf / sec
$ Pressure: psi

$ Temp: degR

$ Angular: radian

$

$ 1 meter =39.37007874 inch

$ 1 second = 1 second

$1kg =0.005710147155 Ibf-sec”2/in
$ 1 kelvin = 1.8 degR

$ 1 radian = 1 radian

$$$ Acceleration (L/TA2)

$ Grav. Accel. = 386.0885827 in/sec"2

$

$$$ Force (ML/T"2)

$ 1 Newton =0.2248089431 Ibf
$ 1 dyne = 2.248089431e-06 Ibf
$ 1 Ibf =1 Ibf

$ 1 kip = 1000 Ibf

* The comment character can be changed by invokprgprowith the-c option.
For exampleprepro -c#input_file output_file will change the comment
character at the beginning of the linegt§See Appendix A on page 51 for a de-
scription of the command options.)

» The temperature conversions are only valid for relative temperatures, for exam-
ple, 100~degC is equal to 180~degF, not 212~degF.

30

* Since several variables are defined in the units system, it is possible to redefine
one of the variable names in your input file. If fkggeprowarning messages are
turned off, you will not be notified of the variable redefinition and erroneous re-
sults may occur. Therefore, you should not turnAgfeprowarning messages
while using the units system, and you should investigate all redefined variable
messages to ensure that you are getting the results you expect.

31

32

7 Material Database Access System

The material database access system has been implemewteekpno to facilitate the
inclusion of material property data in finite element input data files. It consists of a few
functions inAprepro and a specified directory structure of files that contain material
property data for each material in the system and template files for each material model in
each analysis code. The template files format the data from the material property files into
the correct format for the analysis codes.

The material database access system is part of a larger material database system called
MATS which is being developed at Sandia National Laboratories, New Mexico.

7.1 Overview of the MATS System

MATS is a series of programs and datafiles which provides the analyst with a simple method
for retrieving material data from a database and inserting it into an input file for an analysis.
The basicMATS system consists of the algebraic preprocessing Apdeprg a set of
template files for each material model in each analysis code, and a set of material database
files for each material of interest. The full-featuMATS system would also include a
database processor which would take raw test data and/or data from other sources, and
provide the user with tools to process the data. After the user is satisfied with the fit of the
data to the constitutive model that will be used, the data would be written to a datafile that
could be used by the baditATS system.

Figure 1. shows a schematic representation of the proposedsystem. It consists of
three major sections:

» Database Preprocessoithe database processor would be a tool which would
take the raw test data and convert it into the correct format foatedatabase.
Note that for nonlinear materials, this is not a simple conversion that can be per-
formed automatically. The database processor should provide a highly interactive
environment including tools such as multiple curve fitting options, filtering capa-
bilities, options to work with portions of curves, curve editing capabilities, etc.

» Material: The material datafiles would be stored in this section. Each major ma-
terial group (for example, steel, aluminum, foam) would be a separate subdirecto-
ry under this section. These subdirectories would contain material files for each
supported material of this type. For example, the aluminum subdirectory would
have a material file for 6061-T6 aluminum which would contain the material data
used in structural and thermal analysis codes. For example, yield stress, density,
thermal conductivity, and specific heat.

» Code:Code template files (which will be described later) would be stored in this
section. Each supported code would have a separate subdirectory under this sec-
tion. These subdirectories would contain a template file for each constitutive mod-
el supported by the analysis code. For example PH@NTO2D subdirectory

33

would have templates for the Elastic, Elastic/Plastic, Johnson-Cook, Low Density
Foam, and other constitutive models.

Material data would be written into the database using the database processor, a simple text
editor, or a stand-alone program written specifically for that function.

Although the schematic only shows a single database strugtars,will be written to

search in several user-defined locations for the database information. This will allow user-
specific, group-specific, and global databases to be developed. If an analyst develops
personal datafiles for certain materialgsrs can be instructed to first look for the data in

the personal datafiles. If it is found, that data will be used, if it is not fowsds will
continue to search all databases specified by the user until the data is found, or all of the
specified databases have been searched.

DataBase Commercial Data)
Processor

Raw Test Data)

MA TS Steel 4340 304

Material . 6061 T6 Generic

F

Aluminum

Y
i

Foam t 1-51b 40-50 Ib

PRONTO Elastic Elas/Plas

g

 Material 1| | Material 2

A
T

Code COYOTE

CTH r EPDATA EOS

Figure 1. Schematic of Proposed MATS Database System
The remainder of this section will concentrate on Alpeepro interface routines to the

material database system. Documentation of the owesa$f system will be published as
soon as the system is developed and implemented.

34

7.2 Implementation of the Material Database Access Routines

The material database routines are accessed from Wpin@prousing a command of the
form:

{ Material(mat_id, “Mat_Type”, “Mat_Name”, “Model_Type”, “Code”)}

This accesses the material database for the specific mekarighme which is aviat_Type
material and formats it in a form suitable for thedel Type constitutive model in the
codecCode. For example, to use OFHC Copper with the Johnson-Cook constitutivelfnodel
in thePRONTO2D Code, the command would be:

{Material(10,“Copper”,“OFHC Copper”,“Johnson-Cook”,“Pronto2d")}

All strings are converted to lowercase so that the user only has to worry about the correct
spelling.

Aprepromanipulates this line into four commands which load the correct material database
file and the correct template file. The example command produces a command which has
the effect of:

{_material_model = “johnson_cook’}

{include($MATS/material/copper/ofhc_copper)}

{include($MATS/code/pronto2d/johnson-cook)}
{material_model = “ “}

where$MATS is a symbolic variable that points to the location of the material database.
The symbolic variable can specify multiple locations are searched in a user-specified order
to permit private databases to be searched prior to or instead of searching the default
database. The mechanism for doing this is to defindh€Senvironment variable as a

list of colon separated directories. For example,

setenv MATS ~/mats:/department/mats:/global/mats

In many analyses, the analyst may want to modify some of the material properties specified
in the material database file. For example, only a portion of a material may be explicitly
modeled and therefore, the density of the modeled portion must be increased to maintain
the correct mass of the body. In this case, the following commands would be used:

{Material(mat_id, “Mat_Type”, “Mat_Name”, “Model_Type*, “DEFER*)}

{Density = 20000 * kg/m"3} $ User-specified density

{Material(mat_id, “DEFER”, “Mat_Name”, “Model_Type*, “Code")}

This sequence of commands is manipulated into a series of commands which have the
effect of first processing the material definition file, then allowing the user to modify any
of the material parameters, and then formatting the data as specified in the template file for
the specified code.

7.3 Code Template Files:

Each code, or “code family”, has its own set of template files which extract and format the
information in the material database into a code-readable format. For example, prototype

35

template files for use IRRONTO andSANTOS are shown below for thBastic andJohnson
Cook material models.

Material {_matid}, Elastic, { Density} { C_} {dout}
Youngs Modulus ={ Youngs_Modulus} { C_}{pout}
Poissons Ratio = { Poissons_Ratio} { C_} (ho-dimen)

End

Material {_matid}, Johnson Cook, { Density} { C_}{dout}
Youngs Modulus ={ Youngs_Modulus} { C_}{pout}
Poissons Ratio ={ Poissons_Ratio} { C_} (no-dimen)
Yield Stress ={ Yield_Stress} {_C_}{pout}

Hardening Constant = {_Hardening_Constant} { C _} {pout}
Hardening Exponent = {_ Hardening_Exponent} { C_} (no-dimen)
RhoCv ={ RhoCv} { C_} {pout}{Tout}
Rate Constant ={ Rate_Constant} { C_} (no-dimen)
Thermal Exponent ={ Thermal_Exponent} { C } (no-dimen)
Ref Temperature = { Reference_Temperature}{ C } {Tout}
Melt Temperature ={ Melt_Temperature} { C } {Tout}
End

The variable names (enclosed in {}) are defined with leading underscores to reduce the
redefined variable warning messages which would occur for multiple uses of the material
command in a singlApreproexecution.

If a new, or modified, constitutive model is developed, we do not have to develop an entire
new branch of the material database tree. Instead, only a new template file is created and,
possibly, a few constants added to the material database. For example, if the Johnson-Cook
damagamnodel is implemented, the template file could look like:

Material {matid}, JC Damage, {Density}
Youngs Modulus ={Youngs_Modulus}
Poissons Ratio = {Poissons_Ratio}
Yield Stress ={Yield_Stress}
Hardening Constant = {Hardening_Constant}
Hardening Exponent = {Hardening_Exponent}
RhoCV ={RhoCv} $ OR: {Density * Cv}?
Rate Constant = {Rate_Constant}
Thermal Exponent = {Thermal_Exponent}
Ref Temperature = {Reference_Temperature}
Melt Temperature = {Melt_Temperature}
D1 ={D1}, D2 = {D2}, D3 = {D3}, D4 = {D4}, D5 = {D5}
End

where the name in the first line of the template has been changed and the 5 constants at the

end of the template have been added. These constants would then need to be added to the
material files.

36

7.4 Material Files:

A prototype material database file is shown below. Note that the file can be divided into
several sections delineating the Physical, Mechanical, and Thermal properties, for
example.

$ {ECHO(OFF)}
Material Data File for Material -- {Material = “OFHC Copper"}
...NOTE: These data are for example only, DO NOT USE
------ Physical Properties
{ Density = 8960 *kg / m"3}
------ Mechanical Properties
{ Youngs_Modulus =E =124 * GPa}
{ Poissons_Ratio =nu=0.34}
{_Shear_Modulus = E/2/(1+nu)}
{ Bulk_Modulus = E/3/(1-2*nu)}
{ Yield_Stress =450000 * psi}
------ Thermal Properties
{_Conductivity =k =386*W /m/degK}
{ Specific Heat =Cp =383*J/kg/degK}
{ Diffusivity = =k / Density / Cp}
{ Volume_Expansion = 5.0e-5 / degK}
{_Melt_Temperature = 1356 * degK}
——————— Johnson Cook Specific Properties
{_t = (_material_model=="johnson_cook" ||
_material_model=="jc_damage")?1:0}
{ifdef(_t)}
{_Yield_Stress =90 * MPa}
{ Hardening_Constant = 292 * MPa}
{_Hardening_Exponent = 0.31}
...Several other constants

{endif}

———————— Temperature_Dependent_Material Model Specific Properties
(_t = (_material_model == "ep_temperature_dependent")?1:0}
{ifdef(_t)}

{C1 = “<<<Constant Not in Material Database>>>"
{C2 = “<<<Constant Not in Material Database>>>"
...The above two lines will output the message <<<Constant...Database>> to the output
file if they are referenced
{endif}
...Other Models and Information

The material template files can have place holders for all of the information needed for the
currently existing material models; if the information does not exist, the constant is set to

output a warning message to the user of the information. See for example the entry for the
constants£1 andc2 in theep_temperature_dependent material block.

Many of the materials that are typically used in analyses have properties that vary
depending on the temperature and/or strain rates expected in the analysis. This can be
handled in a way similar to that shown in the following example which illustrates
temperature-dependent material properties:

{NOECHO}

37

{rangel = (temp > 0 &&temp<=100)?1:0}
{range2 = (temp > 100 && temp <=200) ? 1: 0}
{range3 = (temp > 200 && temp <=300) ? 1: 0}
{range4 = (temp > 300 && temp <=400) ? 1: 0}
{ECHO}

{ifdef(rangel)}

{_Linear_Expansion = 1.0e-9 / degK}

{endif}

{ifdef(range2)}

{_Linear_Expansion = 2.0e-9 / degK}

{endif}

{ifdef(range3)}

{_Linear_Expansion = 3.0e-9 / degK}

{endif}

{ifdef(range4)}

{_Linear_Expansion = 4.0e-9 / degK}

{endif}

In this example, the Linear Expansion Coefficient is set to a different value according to
the expected temperature in the analysis

7.5 Additional Comments

The material database access routines are somewhat experimental at this time. They have
primarily been implemented to provide an experimental testbed for implementingrhe
material database system. It is expected that the basic functionality documented in this
report will remain stable; however, additional functions may be added if the need arises.
The following list provides some additional information relating to the material database
access routines specifically, and to theg's system in general.

» Material property data is not and will not be distributed Witinepra It is the end
users responsibility to provide this data in the form require@igrgproif the da-
tabase access functionality is desired. The primary reason for doing this is that the
analyst should not treat this function as a black box in which appropriate material
data automagically appear as the result of a simple command. Rather, it should be
treated as a means of efficiently accessing (and converting to the correct units) the
data that the analyst has previously collected and verified.

* A units conversion system (see section 6 on page 25) must be specified prior to
accessing any data in the material database.

» The material database access routines do not verify the consistency of the material
database. Procedures are needed to determine whether the data in the material da-
tabases are consistent. For example, is Poissons Ratio less than 0.5? Are the units
set correctly?, etc.? This should be a separate program so that data can be entered
using different programs and then checked for consistency.

*The mechanism for doing this is not very clean and will probably be changed in the future. This
example is used just to show the concept.

38

 Since several references may be used within a single material file and similar ref-
erences will be used in several material files, there should be a reference list that
will cross reference an abbreviation in the material file to the full bibliographical
citation for the reference. A typical reference in a material file could look like:

$ {Yield_Stress = 145e3*psi} $ Ref: GRJ:9

which would signify that the data were found on page 9 in the docu@feht
which is an abbreviation for some report reference list.

39

40

8 Error, Warning, and Informational Messages

Several error, warning, and informational messages will be printégpiproif certain
conditions are encountered during the parsing of an input file. The messages are of the
form:

Aprepro: Type: Message (file ,line line#)

Where Type is ERRfor an error messag&/ARNfor a warning message, ®Wro for an
informational messagea/essage is an explanation of the problemie is the filename

being processed at the time of the messageijreid is the number of the line within that

file. Error messages are always output, Warning messages are output by default and can
be turned off by using th&v or +warning command option, and Informational messages

are turned off by default and can be turned on by usingthe +message command

option. (See section A on page 51.)

Error Messages

* Aprepro: ERR: parse error (file , line line#) An unrecognized or ill-
formed expression has been entered. Parsing of the file continues following this
expression.

*Aprepro: ERR: Can't open’ file ’: No such file or directory The

file specified in the include command cannot be found or does notApispro
will terminate processing following this error message.

+Aprepro: ERR: Can'topen’ file :Permissiondenied The file specified
in the include or output command could not be opened due to insufficient permis-
sion.Apreprowill terminate processing following this error message.

*Aprepro: ERR: Improperly Nested ifdef/ifndef statements (file
line line#) An invalid ifdef/ifndef block has been detected. Typically this is
caused by an extemdif orelse statement.

«Aprepro: ERR: Zero divisor (file , line line#) An expression tried
to divide by zero. The expression is given the value of the dividend and parsing
continues.

+ Aprepro: ERR: Units File not found The units system specified in the Units

command could not be found. This could be due to a misspelling of the units sys-
tem name, or an incorrectly installed units system.

*Aprepro: ERR: unit file found, no conversion file The units system
has been incorrectly installed or is not available.

«Aprepro: ERR: Error locating material model The specified material
model datafile could not be found.

«Aprepro: ERR: function (file ,line line#) DOMAIN error; Argument
out of domain The arithmetic functiorunction has been passed an invalid

41

argument. For example, the above error would be printed for each of the expres-
sions:

{sqrt(-1.0)} {log(0.0)} {asin(1.1)}

since the arguments are out of the valid domain for the function. The value
returned by the function following an error is system-dependent. See the
function’s man page on your system for more information.

Warning Messages

* Aprepro: WARN: Undefined variable ’ variable ' (file , line line#)
A variable is used in an expression before it has been defined. The variable is set
equal to zero or the null string (") and parsing continues.

¢ Aprepro: WARN: Variable ’ variable ' redefined (file , line line#)
A previously defined variable is being set equal to a new value.

Informational Messages

* Aprepro: INFO: Included File: ’ filename ' (file , line line#) The
file filename is being included at lingme# of file file . This message will also
be printed during the execution of a loop block since temporary files are used to
implement the looping function, and during the execution of the units conversion
and material database access routines.

42

9 Examples

9.1 Mesh Generation Input File

The first example shown in this section is the point definition portion of an input file for a
mesh generation code. First, the locations of the arc center points 1, 2, and 5 are specified.
Then, the radius of each arc is definghq1} , {Rad2} , and{Rads}). Note that the lines

are started with a dollar sign, which is a comment character to the mesh generation code.
Following this, the locations of points 10, 20, 30, 40, and 50 are defined in algebraic
terms. Then, the points for the inner wall are defined simply by subtracting the wall thick-
ness from the radius values.

Title
Example for Aprepro
$ Center Points
Paint 1 {x1=6.31952E+01} {yl= 7.57774E+01}
Paint 2 {x2=0.00000E+00} {y2 =-3.55000E+01}
Paint 5 {x5=0.00000E+00} {y5= 3.62966E+01}
$ Wth ={Wth =3.0}
...Wall thickness
$ Rad5 = {Rad5 = 207.00}
$ Rad2 = {Rad2 = 203.2236}
$ Radl = {Radl = Rad2 - dist(x1,y1; x2,y2)}
$ Angle between Points 2 and 1: {Th12 = atan2d((y1-y2),(x1-x2))}

Point 10 0.00 {y5 - Rad5}

Point 20 {x20 = x1+Rad1} {y5-sgrt(Rad5"2-x20"2)}
Point 30 {x20} {y1}

Point 40 {x1+Radl*cosd(Th12)} {yl+Radl*sind(Th12)}
Point 50 0.00 {y2 + Rad2}

$ Inner Wall (3 mm thick)
$ {Rad5 -= Wth}
$ {Rad2 -= Wth}
$ {Radl -= Wth}

...Rad1, Rad2, and Rad5 are reduced by the wall thickness
Point 110 0.00 {y5 - Rad5}
Point 120 {x20 =x1+Rad1} {y5-sgrt(Rad5"2-x20"2)}
Point 130 {x20} {y1}
Point 140 {x1+Radl*cosd(Th12)} {yl+Radl*sind(Th12)}
Point 150 0.00 {y2 + Rad2}

The output obtained from processing the above input filkkdogprois shown below.

Title

Example for Aprepro

$ Center Points

Point 1 63.1952 75.7774

Point 2 0 -35.5
Point 5 0 36.2966
$ Rad5 = 207

$ Rad2 = 203.2236
$ Radl = 75.2537088
$ Angle between Points 2 and 1: 60.40745947

43

Point 10 0.00 -170.7034
Point 20 138.4489088 -117.5893956
Point 30 138.4489088 75.7774
Point 40 100.3576382 141.214957
Point 50 0.00 167.7236

$ Inner Wall (3 mm thick)

$ 204

$ 200.2236

$ 72.2537088

Point 110 0.00 -167.7034
Point 120 135.4489088 -116.2471416
Point 130 135.4489088 75.7774
Point 140 98.87615226 138.6062794
Point 150 0.00 164.7236

9.2 Macro Examples

Apreprocan also be used as a simple macro definition program. For example, a mesh input
file may have many lines with the same number of intervals. If those lines are defined
using a variable name for the number of intervals, then preprocessing the fidgoreitino
will set all of the intervals to the same value, and simply changing one value will change
them all. The following input file fragment illustrates this

$ {intA = 11} {intB = int(intA / 2)}

line 10 str 10 20 O {intA}

line 20 str 20 30 0O {intB}

line 30 str 30 40 0O {intA}
line 40 str 40 10 0O {intB}

Which when processed looks like:

$115

line 10 str 10 200 11
line 20str203005
line 30 str 30400 11
line 40str401005

9.3 Command Line Variable Assignment

This example illustrates the use of assigning variables on the command line. While gener-
ating a complicated 2D or 3D mesh, it is often necessary to reposition the mesh using
GREPOS. If the following file called shift.grp is created:

Offset X {xshift} Y {yshift}
Exit

then, the mesh can be repositioned simply by typing:

Aprepro xshift=100.0 yshift=-200.0 shift.grp temp.grp
Grepos input.mesh output.mesh temp.grp

44

9.4 Loop Example

This example illustrates the use of the loop construct to print a table of sines and cosines
from O to 90 degrees in 5 degree increments.

Input:

$ Test looping - print sin, cos from 0 to 90 by 5
{angle = -5}
{Loop(19)}

{angle +=5} {sind(angle)} {cosd(angle)}
{EndLoop}

Output:

$ Test looping - print sin, cos from 0 to 90 by 5

-5
0

5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

0 1

0.08715574275 0.9961946981

0.1736481777
0.2588190451
0.3420201433
0.4226182617
0.5
0.5735764364
0.6427876097
0.7071067812
0.7660444431
0.8191520443
0.8660254038
0.906307787
0.9396926208
0.9659258263
0.984807753
0.9961946981
1

0.984807753
0.9659258263
0.9396926208
0.906307787
0.8660254038
0.8191520443
0.7660444431
0.7071067812
0.6427876097
0.5735764364
0.5
0.4226182617
0.3420201433
0.2588190451
0.1736481777
0.08715574275
6.123233765e-17

9.5 Units and Material Database Access Example

This example illustrates the use of the units system and the material database access
routines. The material data shown in this example are for illustrative purposes only and may
not represent actual material data. This example also illustrates the use of the ifdef blocks
to control processing of selected lines. This file was used as an input file for two analyses
in which the mesh for one analysis was a subset of the other analysis. Materials 15 and 16
only appeared in the larger analysis and there were a few changes in boundary condition
numbering between the two analyses. The example is annotated to explain some of the
constructs used. Note that all of the dimensions in the file have unit identifiers so the unit
system of the analysis can be changed simply by picking a new unit system in the Units()

command.

{ECHO(OFF)H{Units("si")}

...Specify the Units system
Title

Units and Material Database Access Example
$ {InitvVel = -sqrt(2.0 * ga * 500~foot)}

45

...Velocity is for a 500 foot drop$
$ {Code = "Pronto3D"}
$ {ConstitModel = "JC Damage"}
...The constitutive model used for all of the materials can now be changed simply by
changing this line.

$
$ NOTE: dimensions - {lout}, {mout}, {dout}, {pout}
...Echo the output units types to document processed file
$
$ {den_17 = (3.125~Ibm) / (2.758e-4~metre”3)}
$ {den_18 = (1.000~Ibm) / (8.747e-5~metre"3)}
...The densities of materials 17 and 18 are modified to get the correct mass for the model
$ Control Information:
Termination Time {ttime = 1.0~millisecond}
Plot Time {ttime / 20}
Output Time {ttime / 200}
Write Restart {ttime / 10}

...Want 20 plot steps, 200 output steps, and 10 restart steps written during the analysis
$ Boundary Conditions:
No Displacement Y 10
{ifdef(LARGE_MODEL)}
Rigid Surface 1600 {-1.85206e-1~meter} 0.0 0.0,1.0 0.0 0.0
Rigid Surface 1601 {-1.85206e-1~meter} 0.0 0.0,1.0 0.0 0.0
Rigid Surface 1602 {-1.85206e-1~meter} 0.0 0.0,1.0 0.0 0.0
{else}
Rigid Surface 400 {-1.56e-1~meter} 0.0 0.0,1.0 0.0 0.0
Rigid Surface 410 {-1.56e-1~meter} 0.0 0.0,1.0 0.0 0.0
Rigid Surface 602 {-1.56e-1~meter} 0.0 0.0,1.0 0.0 0.0
{endif}
...Numbering of boundary conditions changes depending on which mesh is used in the
analysis. LARGE_MODEL is defined when full analysis is run.
Initial Velocity Material 5 {InitVel}
Initial Velocity Material 6 {InitVel}
Initial Velocity Material 8 {InitVel}
Initial Velocity Material 9 {InitVel}
Initial Velocity Material 10 {InitVel}
{ifdef(LARGE_MODEL)}
Initial Velocity Material 15 {InitVel}
Initial Velocity Material 16 {InitVel}
{endif}
...Materials 15 and 16 only appear in the large model
Initial Velocity Material 17 {InitVel}
Initial Velocity Material 18 {InitVel}

...All of the material parameters are defined below.

{Material(5, "Aluminum”, "6061-T6", ConstitModel, Code)}
{Material(6, "HE", "PBX-9502",ConstitModel, Code)}
{Material(8, "Aluminum”, "6061-T6", ConstitModel, Code)}
{Material(9, "Plastic", "Lexan", ConstitModel, Code)}
{Material(10, "Aluminum”, "6061-T6", ConstitModel, Code)}
{ifdef(NOT_DEFINED)}

{Material(15, "Steel", "13-8 H1100", ConstitModel, Code)}
{Material(16, "Aluminum”, "6061-T6", ConstitModel, Code)}

46

{endif}

{Material(17, "Aluminum”, "6061-T6", ConstitModel, "DEFER")}
{_Density = den_17}

{Material(17, "DEFER", "6061-T6", ConstitModel, Code)}
{Material(18, "Aluminum”, "6061-T6", ConstitModel, "DEFER")}
{_Density = den_18}

{Material(18, "DEFER", "6061-T6", ConstitModel, Code)}

...Use all of the database properties for materials 17 and 18, execpt we need to use the
calculated densities to get the correct mass in the model

Portions of the output of this example are shown below:

$

Aprepro ($Revision: 1.36 $) Mon Oct 26 14:15:15 1992

Title
Units and Material Database Access Example

$

$
$
$
$
$
$
$
$

$

-54.67235974
Pronto3D
JC Damage

NOTE: dimensions - meter, kilogram, kg/m”3, Pa

5139.507456
5185.690751

Control Information:
Termination Time 0.001

Plot Time 5e-05
Output Time 5e-06
Write Restart 0.0001

Boundary Conditions:

No Displacement Y 10

Rigid Surface 400 -0.156 0.0 0.0,1.0 0.0 0.0
Rigid Surface 410 -0.156 0.0 0.0,1.0 0.0 0.0
Rigid Surface 602 -0.156 0.0 0.0,1.0 0.0 0.0

$

Initial Velocity Material 5 -54.67235974
Initial Velocity Material 6 -54.67235974
Initial Velocity Material 8 -54.67235974
Initial Velocity Material 9 -54.67235974
Initial Velocity Material 10 -54.67235974
Initial Velocity Material 17 -54.67235974
Initial Velocity Material 18 -54.67235974

6061-T6 Aluminum

Material 5, JC Damage, 2703.78448% kg/m”"3

Youngs Modulus= 6.894792943e+10$ Pa
Poissons Ratio= 0.3157962771% dimensionless
Yield Stress= 324053592.8% Pa

Hardening Constant= 113763495.3% Pa
Hardening Exponent= 0.42$ dimensionless
RhoCv= 2423039.586% Pa/degK

Rate Constant= 0.002$ dimensionless
Thermal Exponent= 1.34$ dimensionless

Ref Temperature= 38.88888889% degK

Melt Temperature= 6703 degK

a7

D1 = -0.77, D2 = 1.45, D3 = -047, D4 = 0, D5 = 1.6
$ all dimensionless
End

$ PBX 9502 (95% TATB, 5% Kel-F 800), Dobratz
Material 6, JC Damage, 1895% kg/m”3

Youngs Modulus= 6894757.293% Pa

Poissons Ratio= 0$ dimensionless

Yield Stress= 6894757.293% Pa

Hardening Constant= 113763495.3% Pa

Hardening Exponent= 0.42$ dimensionless

RhoCv= 2423039.586% Pa/degK

Rate Constant= 0.002$ dimensionless

Thermal Exponent= 1.34$% dimensionless

Ref Temperature= 38.88888889% degK

Melt Temperature= 6703 degK

D1 = -0.77, D2 = 1.45, D3 = -047, D4 = 0, D5 = 1.6
$ all dimensionless
End

...Rest of lines not shown

48

10 References

!G. D. Sjaardema, “Overview of the Sandia National Laboratories
Engineering Analysis Code Access System,” SAND92-2292, Sandia
National Laboratories, Albuquerque, NM, January 1993.

2C. Donnelly and R. Stallman, “BISON--The YACC-compatible Parser
Generator,” Free Software Foundation, Inc., 675 Mass Ave., Cambridge,
MA, 02139, June 1992. Bison Version 1.19.

3V. Paxson, J. Poskanzer, and K. Gong, “FLEX--Fast Lexical Analyzer
Generator,”, Free Software Foundation, Inc., 675 Mass Ave., Cambridge,
MA 02139, June 1989. Flex Version 2.3.6.

4G. D. Sjaardema, “GREPOS: A GENESIS Database Repositioning
Program,” SAND90-0566, Sandia National Laboratories, Albuquerque, NM,
April 1990.

5G. D. Sjaardema and S. W. Attaway, “Proposed Specification for MATS,”
memo to Distribution, dated January 6, 1992, Sandia National Laboratories,
Albuquerque, NM.

5F. W. Walker, J. R. Parrington, and F. Feiner, “Nuclides and Isotopes, 14th
Edition,” General Electric Corporation, San Jose, California, 1989.

’J. C. Jaeger and N. G. W. Coskindamentals of Rock Mechanidird
Edition, Chapman and Hall Publishers, London, 1979.

8T. W. Lambe and R. V. Whitmaoil MechanicsJohn Wiley & Sons, New
York, New York, 1969.

°G. R. Simpson, “Units Computer Program”, copyright 1987.

108, Berliner, “CVS II: Parallelizing Software Development,” USENIX
article, Winter, 1990, Washington, D.C.

HG. R. Johnson and W. H. Cook, “A Constitutive Model and Data for Metals
Subjected to Large Strains, High Strain Rates, and High Temperatures,”
Proceedings of Seventh International Symposium on BalliStiesHague,

The Netherlands, pp. 541-548, April 1983.

49

50

A EXxecution

Apreprois executed with the command:

aprepro [-dsvieWM] [-C’ char][wvar=val[input_file][output_file]

The effect of the parameters are:
-V prints the code name and version to the terminakrgon)

-d prints the name and value of each variable defined in the input
file to the terminal at the end of the run. See SYNTAX for a
description of defining and using variablésdebug)

-S prints statistics on hash table granularity at end of run. Primarily
used fo apreprodevelopment. {statistics)

-c’ char sets the comment character tAareprowrites in front of the version string
and other specific output lines to the first character ohar
(+comment ’'char’)

-i putsapreprointo interactive mode in which there is no buffering of output.
This is useful whenaprepro is used as a pipe for another code.
(+interactive)

-e if this is enabledapreprowill exit when any of the strings EXIT, Exit, exit,
QUIT, Quit, or quit are entered. Otherwisgreprowill exit at end of file.
(+exit_on)

-h print a summary of thepreprocommand line and the valid optionshélp)

-W do not print warning messages such as redefined variables and undefined
variables. tnowarning)

-M do print informational messages such as notification of included files.
(+message)

var=val sets the variablevar' equal to the valu&al‘: This lets you dynamically set
the value of a variable and change it between runs without editing the input
file. Multiple ‘var=val' pairs can be specified on the command line. The
command line definition of a variable does not override the definition of the
same variable in the input file.

input_file specifies the file that contains the input Aprepra If this parameter is
omitted,Apreprowill run interactively.

output_file specifies the file that\prepro will write the processed data to. If this
parameter is omittedpreprowill write the data to the terminal. (stdout)

The+options at the end of the parameter descriptions are optional long-options that can
be specified instead of the short options. For example, the following two lines are
equivalent:

aprepro +debug +nowarning +statistics +comment #
aprepro -dWsc#

Note that the short options can be concatenated.

51

52

B Unit System Defined Variables

In the following list, the first column defines the unit variables that are defined in the
Apreprounit system and the second column is a short description of the unit. All units are
defined in terms of the five SI Base Units metre (length), second (time), kilogram (mass),
temperature (kelvin), and radian (an(f;le'l)he lightly shaded rows delineate the type of unit
variable and the base quantities used to define it where L is length, T is time, M is mass,
and t is temperature. For example density is defined in terms of M/L"3 which is mass/
length”3.

Table 10: Defined Units Variables

Abbreviation

Description

Length

[L]

m, meter, metre

Metre (base unit)

cm, centimeter, centimetre

Metre / 100

mm, millimeter, millimetre

Metre / 1,000

um, micrometer, micrometre

Metre / 1,000,000

km, kilometer, kilometre

Metre * 1,000

in, inch Inch

ft, foot Foot

yd, yard Yard

mi, mile Mile

mil Mil (inch/1000)
Time [T]
second, sec Second (base unit)

usec, microsecond

Second /1,000,000

msec, millisecond

Second /1,000

minute Minute
hr, hour Hour
day Day

* The radian is actually a SI Supplementary Unit since it has not been decided whether it is a Base
Unit or a Derived Unit. There are three other Sl Base Units, the candela, ampere, and mole, but
they are not yet used in the Aprepro units system.

53

Table 10: Defined Units Variables

Abbreviation Description
yr, year Year = 365.25 days
decade 10 Years
century 100 Years
Velocity [L/T]
mph Miles per hour
kph Kilometres per hour
mps Metre per second
kps Kilometre per second
fps Foot per second
ips Inch per second
Acceleration [L/TA2]
ga Gravitational acceleration
Mass M]
kg Kilogram (base unit)
g, gram Gram
Ibm Pound (mass)
slug Slug
Ibfs2pin Lbf-sec”2/in
Density [M/L"3]
gpcc Gram / cm”3
kgpm3 Kilogram / m"3
Ibfs2pin4d Lbf-sec”2 / in™4
Ibmpin3 Lbm /in"3
[bmpft3 Lbm / ft"3
slugpft3 Slug / ft"3
Force [ML/T"2]

N, newton Newton = 1 kg-m/sec”2

54

Table 10: Defined Units Variables

Abbreviation Description
dyne Dyne = newton/10,000
of Gram (force)
kof Kilogram (force)

Ibf Pound (force)

kip Kilopound (force)

pdl, poundal Poundal

ounce Ounce = Ibf / 16

Energy [MLA2/T72]

J, joule Joule = 1 newton-metre
ftlbf Foot-Ibf

erg Erg = 1le-7 joule

calorie International Table Calorie
Btu International Table Btu
therm EEC therm

tonTNT Energy in 1 ton TNT

kwh Kilowatt hour

Power [MLA2/TA3]

W, watt Watt = 1 joule / second
Hp Elec. Horsepower (746 W)
Temperature [t]

degK, kelvin Kelvin (Base Unit)

degC Degree Celsius

degF Degree Fahrenheit

degR, rankine

Degree Rankine

eV Electron \olt
Pressure [M/L/TA2]
Pa, pascal Pascal = 1 newton / metre”

55

No

Table 10: Defined Units Variables

Abbreviation Description
MPa Megapascal
GPa Gigapascal
bar Bar
kbar Kilobar
Mbar Megabar
atm Standard atmosphere
torr Torr =1 mmHg
mHg Metre of mercury
mmHg Millimetre of mercury
inHg Inch of mercury
inH20 Inch of water
ftH20 Foot of water
psi Pound per square inch
ksi Kilo-pound per square inch
psf Pound per square foot
Volume [LA3]
liter Metre”3 / 1000
gal, gallon Gallon (U.S.)
Angular
rad Radian (base unit)
rev Full circle = 360 degree
deg, degree Degree
arcmin Arc minute = 1/60 degree
arcsec Arc second = 1/360 degresq
grade Grade = 0.9 degree

56

57

Distribution

[EEN
o

1562 G. D. Sjaardema

1 1832 J. M. Ramage
1 1400 E. J. Barsis 1 2565 S. T. Montgomery
1 1401 J. R. Asay 1 6313 J. Jung
1 1402 S. S. Dosanjh 1 6411 A. S. Benjamin
1 1403 G. S. Davidson 1 6423 J. F. Dempsey
1 1404 J. A. Ang 1 6513 D. S. Oscar
13 1425 J. H. Biffle & staff 1 6522 J. D. Miller
50 1425 M. K. Smith 5 7141 Technical Library
1 1431 J. M. McGlaun 1 7151 Technical Publications
1 1431 K. G. Budge 10 7613-2 Document Processing
1 1431 J. S. Peery for DOE/OSTI
1 1432 W. T. Brown 1 8523-2 Central Technical Files
1 1433 J. W. Swegle 6 8741 G. A. Benedetti & staff
15 1434 D. R. Martinez & staff 1 8742 M. R. Birnbaum
1500 D. J. McCloskey 1 8742 J. J. Dike
1501 C. W. Peterson 1 8742 L. I. Weingarten
1502 P. J. Hommert 5 8743 M. L. Callabresi & staff

1503 L. W. Davison

1504 D. J. McCloskey, actg
1511 J. S. Rottler

1511 D. K. Gartling

1511 M. W. Glass

1511 P. L. Hopkins

1511 M. J. Martinez

1511 P. A. Sackinger
1511 P. R. Schunk

1511 J. D. Zepper

1512 A. C. Ratzel

1513 R. D. Skocypec
1513 R. G. Baca

1513 B. L. Bainbridge
1513 R. E. Hogan, Jr.
1513 J. L. Moya

1551 W. P. Wolfe

1552 C. E. Hailey

1553 W. L. Hermina

1554 W. H. Rutledge
1561 H. S. Morgan & staff
1562 R. K. Thomas & staff

PR RRPRRPRRPRPRRPRPRRPRPRRPRPRERRRPERRR

el
w ul

58

	1 Introduction
	2 Syntax
	3 Operators
	3.1 Arithmetic Operators
	3.2 Assignment Operators
	3.3 Relational Operators
	3.4 Boolean Operators
	3.5 String Operators

	4 Predefined Variables
	5 Functions
	5.1 Mathematical Functions
	5.2 String Functions
	5.3 Additional Functions

	6 Units Conversion System
	6.1 Introduction
	6.2 Units Conversion Implementation
	6.3 Usage
	6.4 Additional Comments

	7 Material Database Access System
	7.1 Overview of the MATS System
	7.2 Implementation of the Material Database Access...
	7.3 Code Template Files:
	7.4 Material Files:
	7.5 Additional Comments

	8 Error, Warning, and Informational Messages
	9 Examples
	9.1 Mesh Generation Input File
	9.2 Macro Examples
	9.3 Command Line Variable Assignment
	9.4 Loop Example
	9.5 Units and Material Database Access Example

	10 References
	Contents
	Tables
	Figures

