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ABSTRACT

The theoretical and numerical background for the finite element computer program,

COYOTE, is presented in detail. COYOTE is designed for the multi-dimensional analysis

of nonlinear heat conduction problems and other types of diffusion problems. A general

description of the boundary value problems treated by the program is presented. The

finite element formulation and the associated numerical methods used in COYOTE are

also outlined. Instructions for use of the code are documented in SAND94-1179; examples

of problems analyzed with the code are provided in SAND94-1180.





Preface

At the time of release of the first version of COYOTE in mid-1978, it was not anticipated that
the code would receive the heavy usage that it currently enjoys. In response to user needs, the
original program has undergone several minor upgrades plus a major revision in the past several
years. In addition, a preliminary three-dimensional version of COYOTE was developed though
it was not formally documented. Continued requests for additional capabilities combined with
the significant changes in computer hardware and improved numerical algorithms have dictated
the need for a completely new version of the older codes. In rewriting the COYOTE program,
the two and three-dimensional codes have been combined into a single software package. The
present series of reports describe this latest version of the program package, COYOTE.

In an effort to make the programs more flexible and more generally applicable, a number
of new capabilities and features have been added to COYOTE. The element library has been
expanded to include linear and quadratic versions of all solid elements; specialty elements,
such as bars and shells, have also been included. In order to improve the performance of the
solution algorithms, the direct matrix solution methods have been replaced by iterative methods
of the conjugate gradient type. Nonlinear steady-state solutions are obtained by a standard
Picard method augmented with a relaxation scheme. Transient analyses are performed with
a first-order, backward Euler method, a second-order, trapezoid rule or a first-order explicit
procedure. All the integration methods can be run with a fixed time step or a dynamic time
step selection procedure. The capability to perform surface-to-surface radiation in conjunction
with the heat conduction problem has also been added to the code. A significant effort has
been made to provide a rapid view factor capability for large problems; this capability can
also be accessed in a stand-alone mode through the companion code, CHAPARRAL. Also,
material motion, in either an Eulerian or Lagrangian frame, can be accommodated through
user input or through coupling with a solid mechanics code; material addition and deletion
can be simulated, if required. A general contact algorithm has been installed for use with
both static and dynamic problems. COYOTE has been extended to allow chemically reacting
materials to be considered, through the use of a stiff-solver package. Minor improvements in
the allowed material models and boundary condition types and dependencies have also been
incorporated in COYOTE. Input to the code has been redesigned to make more use of keywords
and simplify data preparation. The code is written in standard FORTRAN 77 to increase its
portability; machine dependent utilities are isolated in a portable library. Finally, new pre- and
post-processing file formats have been developed to permit stand-alone mesh generators and
graphics programs to be easily interfaced with the analysis package.

The significant contributions of several individuals to this code development effort must
be acknowledged. The fomulation and solution strategy for the chemical kinetics options in
COYOTE are due to M. R. Baer (1512). The enclosure radiation package was developed by
M. W. Glass (1511). Finally, the development and testing of the iterative matrix solver was
undertaken by P. R. Schunk (1511) and J. R. Shadid (1421).

iii



iv



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1 Introduction 1

2 Formulation of the Basic Equations 3

2.1 Heat Conduction Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Boundary and Interface Conditions . . . . . . . . . . . . . . . . . . . . . 5

2.3 Enclosure Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Chemical Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Finite Element Equations 13

3.1 Heat Conduction Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Convection Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Elements and Element Matrix Construction 19

4.1 Triangular Elements (2D) . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Quadrilateral Elements (2D) . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Hexahedral Elements (3D) . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 Prism Elements (3D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.5 Tetrahedral Element (3D) . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.6 Bar Element (3D and 2D) . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.7 Shell Element (3D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.8 Spatial Derivatives and Integrals . . . . . . . . . . . . . . . . . . . . . . . 32

4.9 Matrix Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.10 Element Boundary Conditions and Source Terms . . . . . . . . . . . . . 36

4.10.1 Volumetric Sources . . . . . . . . . . . . . . . . . . . . . . . . . . 36

v



4.10.2 Surface Fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.10.3 Internal Surface Fluxes . . . . . . . . . . . . . . . . . . . . . . . . 39

4.10.4 Specified Temperature Boundary Conditions . . . . . . . . . . . . 41

4.11 Matrix Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Solution Procedures 43

5.1 Steady-State Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.1 Successive Substitution Method . . . . . . . . . . . . . . . . . . . 44

5.1.2 Continuation Method . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.3 Convergence Criteria . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Transient Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.1 Forward/Backward Euler Integration . . . . . . . . . . . . . . . . 47

5.2.2 Adams-Bashforth/Trapezoid Rule Integration . . . . . . . . . . . 47

5.2.3 Implicit Integration Procedures . . . . . . . . . . . . . . . . . . . 48

5.2.4 Time Step Control . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.5 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.6 Forward Euler Integration . . . . . . . . . . . . . . . . . . . . . . 50

5.2.7 Matrix Diagonalization . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.8 Stability and Time Step Control . . . . . . . . . . . . . . . . . . . 52

5.3 Matrix Solution Procedures . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Radiation View Factor Algorithms . . . . . . . . . . . . . . . . . . . . . 54

5.5 Radiation Solution Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 55

5.6 Chemical Reaction Solution Algorithm . . . . . . . . . . . . . . . . . . . 57

5.7 Phase Change Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.8 Contact Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Pre- and Post-Processing 63

6.1 Mesh Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2 Flux Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3 Heat Flow Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.4 Gas Fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.5 Graphical Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7 References 69

vi



List of Figures

2.1 Schematic for boundary condition definitions. . . . . . . . . . . . . . . . 5

2.2 Nomenclature for enclosure radiation. . . . . . . . . . . . . . . . . . . . . 9

3.1 Finite element discretization of a region. . . . . . . . . . . . . . . . . . . 14

4.1 Two-dimensional triangular elements. . . . . . . . . . . . . . . . . . . . . 20

4.2 Two-dimensional quadrilateral elements. . . . . . . . . . . . . . . . . . . 22

4.3 Three-dimensional brick elements. . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Three-dimensional prism elements. . . . . . . . . . . . . . . . . . . . . . 25

4.5 Three-dimensional tetrahedral elements. . . . . . . . . . . . . . . . . . . 27

4.6 Three-dimensional bar elements. . . . . . . . . . . . . . . . . . . . . . . . 29

4.7 Three-dimensional shell elements. . . . . . . . . . . . . . . . . . . . . . . 30

4.8 Nomenclature for element surface computations. . . . . . . . . . . . . . . 37

4.9 Nomenclature for contact resistance formulation. . . . . . . . . . . . . . . 40

5.1 Definition of material properties for phase change computation. . . . . . 59

6.1 Definition of element boundary for heat function computation. . . . . . . 67

vii



viii



Chapter 1

Introduction

The need for the engineering analysis of systems in which the transport of thermal en-

ergy occurs primarily through a conduction process is a common situation. For all but

the simplest geometries and boundary conditions, analytic solutions to heat conduction

problems are unavailable, thus forcing the analyst to call upon some type of approximate

numerical procedure. A wide variety of numerical packages currently exist for such ap-

plications, ranging in sophistication from the large, general purpose, commercial codes,

such as SINDA [1], P/THERMAL [2], and ABAQUS [3] to codes written by individuals

for specific problem applications.

The original purpose for developing the finite element code described here, COYOTE,

was to bridge the gap between the complex commercial codes and the more simplistic,

individual application programs. COYOTE was designed to treat most of the standard

conduction problems of interest with a user-oriented input structure and format that

was easily learned and remembered. This general philosophy has been retained in the

current version of the program, COYOTE, though the capabilities of the code have been

significantly expanded.

The present document describes the theoretical and numerical background for the

COYOTE program. This volume is intended as a background document for the user’s

manual found in [4]. Potential users of COYOTE are encouraged to become familiar with

the present report and the example analyses report [5] before using the program.

In the following chapter the initial-boundary value problems treated by COYOTE II

are described. Chapter 3 presents a brief description of the finite element method (FEM)

and its application to the current problem. Chapters 4 and 5 outline the computational

techniques that are involved in forming the individual element equations and the equation

1



2 CHAPTER 1. INTRODUCTION

solution procedures needed for the diffusion problem. Chapter 6 outlines the auxiliary

calculation procedures found in the code.



Chapter 2

Formulation of the Basic Equations

COYOTE was primarily developed for the solution of multi-dimensional, nonlinear heat

conduction problems. However, exploiting the analogy between the general heat conduc-

tion equation and other diffusion equations encountered in engineering and physics [6,7],

COYOTE can also be used for other applications. In conjunction with the thermal dif-

fusion problem, COYOTE was also structured to include solid phase chemical reactions

and radiation heat transfer between conducting surfaces.

In the following chapter, the equation describing the basic heat conduction problem

will be outlined along with the limiting assumptions used in developing COYOTE. A

subsequent chapter will discuss all relevant boundary conditions for the heat transfer

problem including enclosure radiation. The general formulation for problems involving

chemical kinetics is also outlined. The theoretical development in each chapter will treat

the general three-dimensional problem since the two-dimensional (plane or axisymmetric)

case usually follows in a straightforward manner.

2.1 Heat Conduction Equation

The appropriate mathematical description of the heat conduction process in a stationary

material region, Ω, is given by,

ρC
∂T

∂t
=

∂

∂xi

(
kij

∂T

∂xj

)
+ Q (2.1)

where ρ is the material density, C the specific heat, kij the thermal conductivity tensor, Q

the volumetric heat source, t the time, xi the spatial coordinates and T the temperature.

3



4 CHAPTER 2. FORMULATION OF THE BASIC EQUATIONS

Equation (2.1) is written for a fixed, Cartesian reference frame with the i, j indices

running between 1 and 3, and the usual summation conventions in effect.

For the present work, each material is allowed to be heterogeneous with the conduc-

tivity tensor being at most, orthotropic (i.e., kij may have three distinct components,

k11, k22 and k33 when written in terms of the principle material axes [6]). In the gen-

eral case, the material properties may be functions of time, spatial location, chemical

composition, and/or temperature. The volumetric heat source may also depend on time,

spatial location and/or temperature; endothermic or exothermic energy release due to a

chemical reaction is also included in the variation of Q.

Equation (2.1) describes the thermal conduction process within a single material.

Conduction heat transfer between materials and convective and radiative energy exchange

with the surrounding environment depends on a set of interface and boundary conditions.

These aspects of the boundary value problem will be considered in the next chapter.

The partial differential equation given in (2.1) is in fact more generally applicable

than indicated above. If a material coordinate (Lagrangian) description is adopted for

the region, Ω, in place of the fixed frame Eulerian description, then equation (2.1) is

also valid for a translating, rotating and/or deforming region, Ω(t). Since no equations

of motion are included in the present formulation, it is assumed that the kinematics for

the material region are completely specified. For rigid body motions such a prescription

is relatively straightforward; new material coordinates are directly defined by a trans-

lation and rotation of the region. Material deformation is generally more complex and

requires the solution of a solid mechanics problem. In the present formulation this data

is assumed to be supplied from an external source. Because the allowance of this type

of material motion adds little to the complexity of the boundary value problem, a La-

grangian description of the conduction problem will be permitted as an optional form

in the present development. One complication that does arise in conjunction with solid

body motion and deformation is the occurrence of contact. Due to the fact that contact

influences the specification of boundary conditions, this problem will be addressed in a

subsequent chapter.

Motion of a material under a fixed Eulerian coordinate description is also possible,

though the energy equation must be modified for this condition. If the material velocity

field is specified by the vector U with Cartesian components uj(xi, t), then the energy

equation in (2.1) is altered to

ρC

(
∂T

∂t
+ uj

∂T

∂xj

)
=

∂

∂xi

(
kij

∂T

∂xj

)
+ Q. (2.2)

All of the conditions stated above for equation (2.1) also pertain to equation (2.2). Since

a momentum equation is not considered in the present formulation it is assumed that the
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Figure 2.1: Schematic for boundary condition definitions.

velocity field is completely prescribed as a function of time and space. The additional

advective term present in (2.2) adds minimal complexity to the formulation and will be

allowed as an alternate energy equation when this type of material motion is prescribed.

Note that equations (2.1) and (2.2) may occur in different regions of the same problem

since they are both referenced to the same coordinate system. Mixtures of Eulerian and

Lagrangian descriptions are also permissable.

2.2 Boundary and Interface Conditions

Boundary and interface conditions for the diffusion problem given by (2.1) or (2.2), are

most easily described by reference to Figure 2.1. The region Ω is generally composed of

a number of different materials, two of which are illustrated in Figure 2.1. The material

interface is denoted by Γm; the external boundary of the region Ω is defined by Γ. A

two-dimensional representation of the region is used for simplicity.

The heat conduction problem requires that either the temperature or the heat flux be

specified at all points of the boundary, Γ. In equation form, these conditions are given
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by

T = fT (si, t) on ΓT (2.3)(
kij

∂T

∂xj

)
ni + qc + qr = f q(si, t) on Γq. (2.4)

In equations (2.3) and (2.4) the fT and f q functions are specified values of the known

boundary temperature and heat flux. Also, ni is the outward unit normal to the boundary

Γq, si are coordinates defined on the boundary and Γ = ΓT ∪Γq. The functions fT and f q

are generally simple expressions for most boundaries of practical interest. The quantities

qc and qr refer to the convective and radiative components of the boundary heat flux and

are given by

qc = hc(si, T, t)(T − Tc) (2.5)

qr = F(ε)σε(T 4 − T 4
r ) (2.6)

where hc is the convective heat transfer coefficient, F is the radiation form factor, σ is

the Stefan-Boltzmann constant, and Tc and Tr are equilibrium temperatures for which no

convection or radiation occurs. The form factor, F , is related to the surface emissivity

of the boundary, ε, and the position of the boundary relative to surrounding surfaces

(see e.g., [8]). This particular form of the radiation condition is useful for approximating

the effects of simple, black-body radiation to a known temperature environment. More

complex environments require the solution of the radiation transfer problem between the

surrounding surfaces and the conducting body or between neighboring surfaces within

the conducting region. This aspect of the problem is considered in Section 2.3.

Along the material interface Γm, the usual assumption is that the temperature and

heat flux are continuous functions. That is,

T |Γ+
m

= T |Γ−m (2.7)(
kij

∂T

∂xj

)
ni

∣∣∣∣
Γ+
m

=

(
kij

∂T

∂xj

)
ni

∣∣∣∣
Γ−m

(2.8)

where the superscript +,− notation indicates properties or variables evaluated on either

side of Γm. The above assumption is altered when contact resistance is a factor or when

the interface is a phase boundary.

The problem of contact resistance between two stationary materials may be repre-

sented by either of two methods. One approach to modeling this effect assumes that the

contact region is composed of a fictitious material, of small thickness, whose properties

produce the appropriate resistance to heat flow across the interface. Typically, this gap

material will have a negligible heat capacity and a nonlinear conductivity. In this case,

the conditions in (2.7) and (2.8) are appropriate for all of the interfaces between the gap

and solid materials. A slightly more mathematical representation of contact resistance
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provides that the heat flux across the interface is described by an internal boundary

condition of the form

qg = hg(si, T̂ , t)(Tm − Ts) (2.9)

where hg is an effective heat transfer coefficient for the gap region and T̂ is an aver-

age temperature between the surface temperatures, Tm and Ts. The subscripts m and

s designate the “master” and “slave” sides of the contact surface, a distinction that is

important in the numerical implementation of equation (2.9). The above flux condition

is a generalization of the external boundary conditions presented in (2.5) and (2.6). In

addition to representing contact resistance, this particular form of heat transfer between

regions can also be used to simplify finite element mesh construction as shown in Sec-

tion 4.10.3. Note that both of the above techniques for representing contact resistance

between fixed surfaces may be used with the numerical methods considered here. When

material motion or deformation is considered, the options for thermal boundary condi-

tions along contacting surfaces are limited to the specification shown in (2.9) and the

surface to surface radiation conditions described in a later chapter.

The conditions present at a phase boundary are somewhat more complex and require

some additional equations. The difficulties at a phase boundary stem mainly from the

fact that the location of the boundary Γm is not known a priori. Thus, the location of

the moving interface becomes a required part of the solution. For the present application

only melt/solid phase transitions will be considered. Also, it will be assumed that density

changes upon change of phase may be neglected. With these assumptions, conditions at

the interface are given by

Tf |Γm = Ts|Γm (2.10)

kf
∂T

∂n

∣∣∣∣
Γm

− ks
∂T

∂n

∣∣∣∣
Γm

= ρL
∂Γm
∂t

(2.11)

where L is the latent heat and Γm(t) is the unknown spatial position of the phase bound-

ary. The subscript f and s denote the fluid and solid phases; the conductivities are

shown as being isotropic though the solid phase tensor could be anisotropic. Basically,

the melt/solid interface is taken to be a continuous temperature boundary with a dis-

continuous heat flux. This interface condition is not convenient for computational work

when considering fixed grid methods. Following the work of Bonacini, et al. [9] and

others, [10,11,12] the jump condition in (2.11) can be written in an alternate form using

the so-called “enthalpy method.”

By observing that the latent heat, L, corresponds to the isothermal change in the

enthalpy, H, for a material at the transition temperature, Tt, the following relation can

be introduced

H(T ) =
∫ T

Tref
C(T )dT + Lη(T − Tt) (2.12)
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with

η(∆) =
{

1 if ∆ ≥ 0

0 if ∆ < 0

where η is the Heaviside function with argument ∆. The equivalent specific heat, C∗, is

then introduced by

C∗(T ) =
dH

dT
= C(T ) + Lδ(T − Tt) (2.13)

where δ is the Dirac delta function. Through the use of (2.13) latent heat effects may be

included via the specific heat function and the jump in the heat flux (equation (2.11))

eliminated from the problem formulation. This particular approach to the problem has

a theoretically sound basis as outlined in [9]. Moreover, it is a computationally effective

modification since a two region problem with a jump condition has been converted to

a single region problem with rapidly varying properties. For use in a finite element

model, equation (2.13) requires additional modification. The details of this procedure

are considered in references [5,10] and in Section 5.7.

Equations (2.1) through (2.13) provide a complete description of the boundary value

problem for the temperature, T . When considering a time-dependent problem a suitable

set of initial conditions describing the initial spatial distribution of T is also required.

2.3 Enclosure Radiation

Radiant energy exchange between neighboring surfaces of a region or between a region

and its surroundings can produce large effects in the overall heat conduction problem.

Though the radiation effects generally enter the conduction problem only through the

boundary conditions, the coupling is especially strong due to the nonlinear dependence of

the radiation on the surface temperature. COYOTE allows a restricted class of radiation

problems to be solved in conjunction with the basic conduction problem.

Enclosure or surface-to-surface radiation in COYOTE is limited to diffuse gray sur-

faces. This assumption implies that all energy that is emitted or reflected from a surface

is diffuse. Further, surface emissivity, ε, absorbtivity, α, and reflectivity, ρ, are indepen-

dent of wavelength and direction so that ε(T ) = α(T ) = 1− ρ(T ). Each individual area

or surface that is considered in the radiation process must be at a uniform temperature;

emitted and reflected energy are uniform over each such surface. Note that the definition

of a surface is arbitrary and can be based on geometry alone or be defined to specifically

satisfy the uniform temperature criteria.

With the above assumptions the radiation problem can be approached using the

net-radiation method as described in [8]. For purposes of discussion consider the two-
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Figure 2.2: Nomenclature for enclosure radiation.

dimensional enclosure made up of N distinct surfaces as shown in Figure 2.2. Associated

with each surface is a uniform temperature Tj,

an area Aj and a surface emissivity εj . An energy balance for each surface in the

enclosure leads to the following system of equations

N∑
j=1

[
δkj
εj
− Fk−j

(
1− εj

εj

)]
Qj

Aj
=

N∑
j=1

(δkj − Fk−j) σTj
4. (2.14)

Equation (2.14) relates the net energy loss, Qj , from each surface to the temperature of

each surface, where δkj is the unit tensor, σ is the Stefan-Boltzmann constant and Fk−j
are radiation view (configuration) factors. The view factor is defined as the fraction of

energy leaving a surface that arrives at a second surface. For surfaces with finite areas

the view factors are defined by

Fk−j =
1

Ak

∫
Ak

∫
Aj

cos θk cos θj
πS2

dAj dAk (2.15)

where S is the distance from a point on surface Aj to a point on surface Ak. The

angles θj and θk are measured between the line S and the normals to the surface as

shown in Figure 2.2 (see also [8]). It is clear from (2.15) that the view factors are

purely geometric quantities that can in principle be evaluated for any given distribution

of surfaces. Methods for evaluating Fk−j will be outlined in a later chapter.



10 CHAPTER 2. FORMULATION OF THE BASIC EQUATIONS

For purposes of computation it is convenient to rearrange (2.14) into the following

series of equations
N∑
j=1

[δkj − (1− εk)Fk−j] q
o
j = εkσT 4

k (2.16)

and

qk = qok −
N∑
j=1

Fk−jq
o
j . (2.17)

Equations (2.16) and (2.17) are expressed in terms of the outgoing radiative flux for

each surface, qoj , and the net flux from each surface qk = Qk/Ak. For known surface

temperatures Tk in the enclosure, equation (2.16) can be solved for the outgoing radiative

flux at each surface. Equation (2.17) then allows the net flux at each surface to be

evaluated and applied to the conduction problem as a known flux boundary condition.

The actual method of solution using (2.16) and (2.17) in a finite element context will be

discussed in Section 5.5.

2.4 Chemical Kinetics

The thermal diffusion problem outlined in Sections 2.1-2.3 is modified significantly when

one or more materials in the region Ω are allowed to undergo a chemical reaction. Each

reactive material must be considered a mixture of I species with thermophysical proper-

ties now being a function of chemical composition. In addition, the J chemical reactions

associated with a reactive material will normally produce a significant change in internal

energy that subsequently provides a source term to the thermal diffusion problem. COY-

OTE has been designed to handle a fairly general class of reaction-diffusion problems.

To describe a chemically reacting material, the stoichiometry, reaction kinetics and

material property behavior must be specified. Consider a material involving I species

with J reactions. The description of the allowed reactions (stoichiometry) is given by

I∑
i=1

ν′ijMi →
I∑
i=1

ν′′ijMi for j = 1, 2, . . . , J (2.18)

where ν′ij , ν
′′
ij are stoichiometric coefficients (usually integer values) andMi is the chem-

ical symbol for the ith species. Generally, these expressions are given as reversible re-

actions; however, they are treated here as irreversible and the reversed reactions are

specified as additional reaction steps. To accommodate expressions for global reactions,

the stoichiometric coefficients are allowed to be non-integer.
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For each step of the reaction, a reaction rate rj, is defined in the form:

rj = kj(T )
I∏
i=1

[Ni]
µij for j = 1, 2, . . . , J (2.19)

where [Ni] is the concentration variable for species i (or mole fraction), and µij are the

concentration exponents (usually µij = ν′ij in kinetic theory, but here they are treated

independently). Typically, the expressions for the kinetic coefficients kj(T ), are given in

an Arrhenius form

kj(T ) = T βj Aj exp(−Ej/RT ) (2.20)

where βj is the coefficient for a steric factor, Aj is the pre-exponential factor, Ej is

the activation energy and the universal gas constant is R. It is convenient to define

νij = (ν′′ij−ν′ij) and thus the rate of change of the species (neglecting diffusion) are given

as
d

dt
[Ni] =

J∑
j=1

νijrj for i = 1, 2, . . . , I (2.21)

The chemical reaction process is coupled directly to the thermal diffusion problem by the

volumetric source term

Qr =
J∑
j=1

qjrj (2.22)

where qj represents the known endothermic or exothermic energy release for reaction

step j.

The material properties for the mixture are usually represented as mole fraction

weighted averages of the I constituents. That is

(ρC)mix =
I∑
i=1

[Ni](ρC)i (2.23)

(kjk)mix =
I∑
i=1

[Ni](kjk)i (2.24)

where the constituent properties could still be functions of temperature. Another useful

parameter for the mixture is the reacted gas fraction which is defined as the fraction of

reacting material that exists in gas phase and is represented by

Fc =

(1.0−Xc)
I∑
i=1

[Ni](g)i

I∑
i=1

[Ni]

(2.25)
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where (g)i is unity for gas phase species or zero for condensed phase species and Xc is

the condensed fraction for the reactive material.

The species equations in (2.21) must be solved for each reactive material in conjunc-

tion with the thermal diffusion problem. This is a particularly difficult problem due to

the disparity in time scales among the reaction equations and especially between the

chemical processes and the thermal diffusion. In COYOTE, reactive materials are in-

cluded via an operator splitting method and the use of stiff, ordinary differential equation

solvers for the species equations. This methodology is outlined in Chapter 5.



Chapter 3

Finite Element Equations

The spatial discretization of the boundary value problem outlined in Chapter 2 by use of

the finite element method may be approached by either of two procedures. Historically,

the first and most popular approach consists of rewriting the boundary value problem in

a variational form for use with the finite element approximation. An equivalent method

uses the Galerkin form of the method of weighted residuals to create an integral form of

the basic conservation law. This latter method is employed here.

3.1 Heat Conduction Equation

Let the region of interest, Ω, be divided into a number of simply shaped regions called

finite elements, as shown in Figure 3.1. Within each element, a set of nodal points are

established at which the dependent variable (i.e., T ) is evaluated. The variation of the

temperature field within each element is approximated by an expansion of the form

T (xi, t) =
Ne∑
n=1

Θn
e (xi)T

n
e (t) (3.1)

where Θe represents the Ne interpolation functions and Te are the Ne nodal point temper-

atures in the element. The ability to define simple, local approximations to the dependent

variable is a primary feature of the finite element method. However, in order to develop a

Galerkin, weighted residual formulation which is valid over the entire (global) domain, Ω,

the local temperature variation in (3.1) must be extended to represent the temperature

over the assemblage of elements. Standard compatibility properties of the piecewise ele-

ment approximations given in (3.1) and the use of incidence relations (connectivity) for

the assemblage of elements, allows a global temperature representation to be constructed.

13
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Figure 3.1: Finite element discretization of a region.

Details of this process may be found in [13,14]. The global temperature field has a form

similar to (3.1) and is expressed as

T (xi, t) =
N∑
n=1

Θn(xi)T
n(t) (3.2)

or in matrix notation,

T (xi, t) = ΘT (xi)T(t) (3.3)

where Θ is now a vector of basis or interpolation functions defined on Ω, T is a vector of

nodal point unknowns, superscript T denotes a vector transpose, and N is the number

of nodal points in the domain. Substitution of equation (3.3) into the partial differential

equation (2.1) yields a set of residual equations, due to the approximate nature of equation

(3.3). In functional form then

fT (Θ,T) = RT . (3.4)

The Galerkin method guarantees the orthogonality of the residual vectors to the space

spanned by the interpolation functions. This orthogonality is expressed by the inner

product,

〈Θ, fT 〉 = 〈Θ, RT 〉 = 0 (3.5)
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where 〈a, b〉 denotes the inner product defined by

〈a, b〉 =
∫

Ω
a · b dΩ (3.6)

Carrying out the above operations explicitly for the heat conduction equation (2.1)

yields the following,∫
Ω

ρCΘΘT ∂T

∂t
dΩ−

∫
Ω
Θ

∂

∂xi

(
kij

∂ΘT

∂xj
T

)
dΩ−

∫
Ω
ΘQdΩ = 0. (3.7)

As is standard practice [13], the second-order diffusion term in (3.7) may be rewritten

using the divergence theorem to produce a first-order term plus a boundary integral.∫
Ω

ρCΘΘT ∂T

∂t
dΩ +

∫
Ω

∂Θ

∂xi

(
kij

∂ΘT

∂xj
T

)
dΩ =

∫
Ω
ΘQdΩ +

∫
Γ
Θ

(
kij

∂ΘT

∂xj
T

)
ni dΓ. (3.8)

Recognizing the boundary integral in (3.8) as part of the boundary condition specification

in (2.4) allows this term to be reconfigured as

∫
Ω

ρCΘΘT ∂T

∂t
dΩ+

∫
Ω

∂Θ

∂xi

(
kij

∂ΘT

∂xj
T

)
dΩ =

∫
Ω
ΘQdΩ+

∫
Γ
Θ (f q − qc − qr) dΓ. (3.9)

Noting that the nodal point unknowns are independent of the spatial integration and

may be moved outside the integrals allows (3.9) to be written in the following matrix

form

M(T)Ṫ + K(T)T = FQ(T) + F(T) (3.10)

where the superposed dot indicates a time derivative and the possible dependencies on

the dependent variable have been indicated. The individual matrices and vectors are

defined by

M(T) =
∫

Ω
ρCΘΘT dΩ

K(T) =
∫

Ω

∂Θ

∂xi

(
kij

∂ΘT

∂xj

)
dΩ (3.11)

FQ(T) =
∫

Ω
ΘQdΩ

F(T) =
∫

Γ
Θ (f q − qc − qr) dΓ

In deriving the matrix equation (3.10) from the Galerkin (weighted residual) method,

it was important to work with the globally defined temperature approximation or basis
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functions to avoid mathematical difficulties [13]. However, for purposes of implementa-

tion, it is more convenient to return to the local, element-level description of the equa-

tions. The process of constructing (assembling) the global matrices M,K, and F from

element level contributions is generally termed the direct stiffness method and is based

primarily on the decomposition of the integrals defined for (3.11). Omitting the technical

details [13,14], the global integrals over Ω can be written as the sum of the integrals over

individual elements, Ωe, which along with the appropriate incidence (or connectivity)

relations between elements allows the following fundamental property to be defined

M =
∑
e

Me ; K =
∑
e

Ke ; F =
∑
e

Fe (3.12)

In (3.12) the sum is over all the elements in the domain and the element matrices are

defined by

Me =
∫

Ωe
ρCΘeΘe

TdΩ

Ke =
∫

Ωe

∂Θe

∂xi
kij

∂Θe
T

∂xj
dΩ (3.13)

FQe =
∫

Ωe
ΘeQdΩ

Fe =
∫

Γe
Θe(f

q − qc − qr)dΓ

Once the form of the element interpolation function, Θe, is known and the element

geometry is specified, the integrals in (3.13) can be evaluated. The global matrix problem

is then constructed through use of (3.12).

3.2 Convection Equation

The derivation in the previous chapter considered the boundary value problem for thermal

diffusion as described by equation (2.1). For an Eulerian coordinate frame with a specified

material velocity, the advection-diffusion equation (2.2) is the appropriate continuum

description for energy transport. The finite element form of this equation is derived by

the same procedure as outlined above.

The temperature field is again represented by an expansion of the form given in (3.3)

T (xi, t) = ΘT (xi)T(t)

and the known velocity field is represented by a similar interpolation given by

uj(xi, t) = ΦT (xi)uj(t). (3.14)



3.2. CONVECTION EQUATION 17

For generality, the interpolation function Φ in (3.14) is shown to be different from the

interpolation for the temperature, though in practice these are usually the same function.

Substituting (3.3) and (3.14) into (2.2) produces a residual equation of the form

fT (Θ,Φ,uj,T) = RT . (3.15)

Applying the Galerkin method with weight function Θ produces

∫
Ω

ρCΘΘT ∂T

∂t
dΩ +

∫
Ω

ρCΘΦTuj
∂ΘT

∂xj
T dΩ +

∫
Ω

∂Θ

∂xi

(
kij

∂ΘT

∂xj
T

)
dΩ =

∫
Ω
ΘQdΩ +

∫
Γ
Θ (f q − qc − qr) dΓ (3.16)

where the second-order diffusion terms have been integrated by parts. The boundary

conditions, being the same for this equation as equation (2.1), have been used to redefine

the boundary integral. The matrix form of this equation is

M(T)Ṫ + C(uj,T)T + K(T)T = FQ(T) + F(T) (3.17)

which is directly analogous to (3.10). The global advection matrix is defined by

C(uj,T) =
∫

Ω
ρCΘΦTuj

∂ΘT

∂xj
dΩ (3.18)

while the element level matrix is

Ce =
∫

Ωe
ρCΘeΦe

Tuj
∂Θe

T

∂xj
dΩ. (3.19)

As before, assembly of the global system follows the format defined in (3.12). The only

difference between the convective-diffusive and diffusive forms of the energy equation

is the occurrence of the advective matrix defined by (3.18). This term requires that a

velocity field be defined as a function of space and time over the appropriate domain, Ω.

Note that the convective term is unsymmetric and the global equation system is therefore

unsymmetric when this formulation is employed. Also, this form of the energy equation

is only available with the continuum elements in the element library; the convection

formulation cannot be employed with bar or shell elements.
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Chapter 4

Elements and Element Matrix
Construction

The formulation of the equations for an individual element, as indicated by equations

(3.10), (3.12), and (3.13), requires the specification of the shape function vectors for the

approximation of the temperature. The form of the shape functions depend on the par-

ticular element being used; COYOTE employs two basic elements for two-dimensional

analyses and three element types in the three-dimensional case. Special geometric ele-

ments, such as bars and shells, are also available. The interpolation functions for each

of these elements are described below. For each element type both linear and quadratic

interpolation is available; the higher-order functions are generally of the “serendipity”

type [14] and avoid the use of nodes located in the interior of the element. Other ele-

ment types, such as the higher-order Lagrange elements, could be added to COYOTE

with minor code modifications. When the convective form of the energy equation is em-

ployed, the velocity interpolation is always constrained to be the same as the temperature

interpolation for the element, i.e. Φ = Θ.

4.1 Triangular Elements (2D)

The triangular elements used in two-dimensional applications of COYOTE consist of a

straight-sided, three-node element and a six-node element as shown in Figure 4.1. The

linear interpolation function for the three-node element is given by

Θl =


L1

L2

L3

 (4.1)

19
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Figure 4.1: Two-dimensional triangular elements.

and the corresponding quadratic function for the six-node element is

Θq =



L1(2L1 − 1)

L2(2L2 − 1)

L3(2L3 − 1)

4L1L2

4L2L3

4L3L1


. (4.2)

The ordering of the functions in (4.1) and (4.2) corresponds to the ordering of the nodes

shown in Figure 4.1. The shape functions are expressed in terms of the area or natu-

ral coordinates, Li, for a triangle [13,14] which range from 0 to 1, and are related by

the auxiliary condition L1 + L2 + L3 = 1 (i.e., there are only two independent area

coordinates).

When the element interpolation functions are written in terms of the area coordinates,

the relationship between the physical coordinates x, y (or r, z in the axisymmetric case)

and the element coordinates is obtained from the parametric mapping concept originally

developed by Ergatoudis, et al. [15]. That is, the coordinate transformation is given by

x = ΥTx ; y = ΥTy (4.3)

where Υ is a vector of interpolation functions on the triangle and the x,y are vectors of

coordinates describing the geometry of the element (generally, nodal point coordinates).



4.2. QUADRILATERAL ELEMENTS (2D) 21

The transformation given in (4.3) is quite general and allows for the description of curved-

sided elements. In the present case, if Υ = Θl, a linear interpolation of the element

boundary is possible. When Υ = Θq, a quadratic interpolation of the element geometry

is allowed. Note that when the functions defining the element geometry are the same as

those defining the dependent variable the element is termed isoparametric; a geometric

description which is lower order than the dependent variable is defined as subparametric.

COYOTE directly supports only isoparametric elements; straight-sided, higher order

elements can be utilized by appropriately locating mid-edge nodes.

4.2 Quadrilateral Elements (2D)

Two types of quadrilateral elements are used in COYOTE – a four-node and an eight-

node element. For the linear, four node element the interpolation functions are given

by

Θl =


1/4(1− s)(1− t)

1/4(1 + s)(1− t)

1/4(1 + s)(1 + t)

1/4(1− s)(1 + t)

 . (4.4)

The ordering of the functions in (4.4) corresponds to the nodal point ordering shown

in Figure 4.2a. The interpolation functions are written in terms of the normalized or

natural coordinates for the element, s, t, which vary from −1 to +1 as shown in the

figure.

The eight-node element uses the biquadratic, “serendipity” functions [14] given by

Θq =



1/4(1− s)(1− t)(−s− t− 1)

1/4(1 + s)(1− t)(s− t− 1)

1/4(1 + s)(1 + t)(s + t− 1)

1/4(1− s)(1 + t)(−s + t− 1)

1/2(1− s2)(1− t)

1/2(1 + s)(1− t2)

1/2(1− s2)(1 + t)

1/2(1− s)(1− t2)



. (4.5)

The parametric mapping concept described for the triangular element is also available

for use with the quadrilaterals. Therefore, to relate the global coordinates x, y (or r, z)

to the local s, t system, let

x = ΥTx ; y = ΥTy. (4.6)
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Figure 4.2: Two-dimensional quadrilateral elements.

where Υ may be either a linear or quadratic (“serendipity”) interpolation function.

Again, COYOTE only supports the formulation of isoparametric quadrilaterals, though

subparametric elements can be employed through the proper location of mid-edge nodes.

4.3 Hexahedral Elements (3D)

The hexahedral or brick elements available in COYOTE for three-dimensional analyses

consist of a straight-edged, linear, eight-node element and a curved-sided, quadratic,

twenty-node element as shown in Figure 4.3. The linear element has shape functions

given by
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Figure 4.3: Three-dimensional brick elements.
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Θl =



1/8(1− s)(1− t)(1− r)

1/8(1 + s)(1− t)(1− r)

1/8(1 + s)(1 + t)(1− r)

1/8(1− s)(1 + t)(1− r)

1/8(1− s)(1− t)(1 + r)

1/8(1 + s)(1− t)(1 + r)

1/8(1 + s)(1 + t)(1 + r)

1/8(1− s)(1 + t)(1 + r)



. (4.7)

The quadratic shape functions for the twenty-node element are given by

Θq =



1/8(1− s)(1− t)(1− r)(−s− t− r − 2)

1/8(1 + s)(1− t)(1− r)(s− t− r − 2)

1/8(1 + s)(1 + t)(1− r)(s + t− r − 2)

1/8(1− s)(1 + t)(1− r)(−s + t− r − 2)

1/8(1− s)(1− t)(1 + r)(−s− t + r − 2)

1/8(1 + s)(1− t)(1 + r)(s− t + r − 2)

1/8(1 + s)(1 + t)(1 + r)(s + t + r − 2)

1/8(1− s)(1 + t)(1 + r)(−s + t + r − 2)

1/4(1− s2)(1− t)(1− r)

1/4(1 + s)(1− t2)(1− r)

1/4(1− s2)(1 + t)(1− r)

1/4(1− s)(1− t2)(1− r)

1/4(1− s)(1− t)(1− r2)

1/4(1 + s)(1− t)(1− r2)

1/4(1 + s)(1 + t)(1− r2)

1/4(1− s)(1 + t)(1− r2)

1/4(1− s2)(1− t)(1 + r)

1/4(1 + s)(1− t2)(1 + r)

1/4(1− s2)(1 + t)(1 + r)

1/4(1− s)(1− t2)(1 + r)



. (4.8)

The functions in (4.7) and (4.8) are ordered according to the nodal point ordering shown

in Figure 4.3 and are written in terms of the local, normalized coordinates, s, t, r, which

range from −1 to +1. COYOTE allows only the isoparametric form of each three-

dimensional element where

x = ΥTx ; y = ΥTy ; z = ΥTz (4.9)

and Υ takes on the appropriate linear or quadratic form.
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Figure 4.4: Three-dimensional prism elements.

4.4 Prism Elements (3D)

COYOTE employs a linear and quadratic version of a triangular prism or wedge element.

The linear, straight-sided, six-node prism and curved-sided, fifteen-node quadratic ele-

ment are shown in Figure 4.4. The shape functions for these elements are given by

Θl =



1/2L1(1− r)

1/2L2(1− r)

1/2L3(1− r)

1/2L1(1 + r)

1/2L2(1 + r)

1/2L3(1 + r)


(4.10)
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and

Θq =



1/2L1[(2L1 − 1)(1− r)− (1− r2)]

1/2L2[(2L2 − 1)(1− r)− (1− r2)]

1/2L3[(2L3 − 1)(1− r)− (1− r2)]

1/2L1[(2L1 − 1)(1 + r)− (1− r2)]

1/2L2[(2L2 − 1)(1 + r)− (1− r2)]

1/2L3[(2L3 − 1)(1 + r)− (1− r2)]

2L1L2(1− r)

2L2L3(1− r)

2L3L1(1− r)

L1(1− r2)

L2(1− r2)

L3(1− r2)

2L1L2(1 + r)

2L2L3(1 + r)

2L3L1(1 + r)



. (4.11)

The functions in (4.10) and (4.11) use area coordinates, Li, for describing the triangular

cross-chapter and a normalized coordinate, r, for the axial coordinate. Note that L1 +

L2 +L3 = 1; the Li vary from 0 to 1 and r varies from −1 to +1. Only the isoparametric

forms of this element are employed in COYOTE.

4.5 Tetrahedral Element (3D)

The three-dimensional tetrahedron used in COYOTE may be either a four-node or ten-

node isoparametric element as shown in Figure 4.5. The linear element is defined by the

functions

Θl =


L1

L2

L3

L4

 (4.12)
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Figure 4.5: Three-dimensional tetrahedral elements.

while the quadratic element has shape functions of the form

Θq =



L1(2L1 − 1)

L2(2L2 − 1)

L3(2L3 − 1)

L4(2L4 − 1)

4L1L2

4L2L3

4L3L1

4L1L4

4L2L4

4L3L4



. (4.13)

The functions in (4.12) and (4.13) are ordered as shown in the figure and are written

in terms of the volume coordinates [14] for the element, where L1 + L2 + L3 + L4 = 1.

Again, only the isoparametric forms of this element are considered.
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4.6 Bar Element (3D and 2D)

The three-dimensional bar elements available in COYOTE may be either a two-node or

three-node, isoparametric element as shown in Figure 4.6. This element has a variable

cross-chapteral area with conduction only allowed along the axis of the element. Note that

the shape of the cross-chapter need not be explicitly defined here, though for purposes of

boundary condition application, a circular cross-chapter is assumed. The shape function

for the two-node element is defined by

Θl =

{
1/2(1− s)

1/2(1 + s)

}
. (4.14)

and the three-node element is described by

Θq =


1/2(s− 1)s

1/2(s + 1)s

(1− s2)

 . (4.15)

The functions in (4.14) and (4.15) are ordered as shown in the figure and are written

in terms of the normalized coordinate s that varies from −1 to +1. The parametric

mapping given in (4.9) relates the global coordinates x, y, z for the element to the local

coordinate, s; the mapping function Υ is defined by (4.14) and (4.15) for the two- and

three-node elements, respectively.

The bar elements for two-dimensional, planar problems are also defined by the shape

functions in (4.14) and (4.15). In this case, the isoparametric mapping is carried out from

the x, y coordinates to the local coordinate s. The variable, cross-chapteral area for the

two-dimensional case reduces to a variable thickness with unit depth. The axisymmetric,

two-dimensional bar is treated in a similar manner, though it is rotated through an angle

of 2π about the z axis. In both two-dimensional cases the bar element should be thought

of as a one-dimensional conduction element in the plane of the problem. These elements

are also equivalent to the two-dimensional version of a shell element.

4.7 Shell Element (3D)

The three-dimensional shell elements defined in COYOTE are specialized elements that

allow conduction in the plane of the element but no transport through the thickness.

Shells with both triangular and quadrilateral planforms are available; all elements allow

variations in the shell thickness. These elements are shown in Figure 4.7. The tempera-

ture shape function for the three-node, triangular element is defined by
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Figure 4.6: Three-dimensional bar elements.
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Figure 4.7: Three-dimensional shell elements.
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Θl =


L1

L2

L3

 (4.16)

and the six-node, triangular shell has the following shape functions

Θq =



L1(2L1 − 1)

L2(2L2 − 1)

L3(2L3 − 1)

4L1L2

4L2L3

4L3L1


(4.17)

where the Li are the standard, in-plane area coordinates that vary from 0 to +1. The

four-node, quadrilateral shell has shape functions of the form

Θl =


1/4(1− s)(1− t)

1/4(1 + s)(1− t)

1/4(1 + s)(1 + t)

1/4(1− s)(1 + t)

 (4.18)

while the eight-node, “serendipity” shell is defined by

Θq =



1/4(1− s)(1− t)(−s− t− 1)

1/4(1 + s)(1− t)(s− t− 1)

1/4(1 + s)(1 + t)(s + t− 1)

1/4(1− s)(1 + t)(−s + t− 1)

1/2(1− s2)(1− t)

1/2(1 + s)(1− t2)

1/2(1− s2)(1 + t)

1/2(1− s)(1− t2)



(4.19)

and the normalized s, t coordinates vary from −1 to +1. The shape functions defined in

(4.16)-(4.19) are recognized as being identical to the interpolation functions for the two-

dimensional triangular and quadrilateral elements from Sections 4.1 and 4.2. Though the

interpolation of temperature within the plane of the elements is similar, the geometrical

representation of the planar elements and the shell elements are quite different. The

parametric mapping for any of the shell elements is accomplished with the following

definitions

x = ΥTx + rΥT δ

2
e3 · ex

y = ΥTy + rΥT δ

2
e3 · ey (4.20)
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z = ΥTz + rΥT δ

2
e3 · ez

where Υ is the appropriate linear or quadratic interpolation within the plane (e.g., equa-

tions (4.16)-(4.19)), x,y, z are vectors of coordinates for the midplane nodes of the el-

ement, r is the normalized coordinate along the normal to the element midplane and

δ is a vector of thickness values at the nodes. The vectors e1, e2 are defined as being

tangent to the curvilinear coordinates s, t on the element midplane; e3 is normal to the

element midplane and is defined by e3 = e2 × e1. The unit vectors ex, ey, ez define the

orientation of the global coordinate system. Note that, in general, e3 varies over the

planform of the element (e3(s, t) or e3(L1, L2)) and this variation must be accounted for

in the construction of the Jacobian entries for the element mapping procedure. All of

these vectors are more completely defined in a subsequent chapter.

4.8 Spatial Derivatives and Integrals

The construction of the various finite element coefficient matrices in (3.13) and (3.19)

requires the integration of combinations of the interpolation functions and their spatial

derivatives over the volume (area) of the element. The integration process is most easily

carried out in the normalized or natural coordinate system for each element since the

limits of integration are simple and independent of the global coordinates. The shape

functions presented in the previous chapters were expressed in the natural coordinate

system for each element. There remains the task of expressing spatial derivatives of the

shape functions in terms of the same normalized coordinates. The following relations,

based on the chain rule and the parametric mapping ideas, are needed

∂Λ
∂s

∂Λ
∂t

∂Λ
∂r


=



∂x
∂s

∂y
∂s

∂z
∂s

∂x
∂t

∂y
∂t

∂z
∂t

∂x
∂r

∂y
∂r

∂z
∂r





∂Λ
∂x

∂Λ
∂y

∂Λ
∂z


=



J11 J12 J13

J21 J22 J23

J31 J32 J33





∂Λ
∂x

∂Λ
∂y

∂Λ
∂z


= J



∂Λ
∂x

∂Λ
∂y

∂Λ
∂z


(4.21)

where Λ represents any of the element interpolation functions (e.g., Θl,Θq) and J is

the Jacobian of the transformation from global coordinates x, y, z to the local element

coordinates s, t, r. The parametric mapping scheme defined in the previous chapters

(e.g., equations (4.3), (4.9) or (4.20)) can be used to define the components of J. That

is,

J11 =
∂Υ

∂s

T

x ; J12 =
∂Υ

∂s

T

y ; J13 =
∂Υ

∂s

T

z

J21 =
∂Υ

∂t

T

x ; J22 =
∂Υ

∂t

T

y ; J23 =
∂Υ

∂t

T

z (4.22)
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J31 =
∂Υ

∂r

T

x ; J32 =
∂Υ

∂r

T

y ; J33 =
∂Υ

∂r

T

z

Inverting the transformation matrix in (4.21) provides the required definition of the

spatial derivatives of the shape functions in terms of the local element coordinates

∂Λ
∂x

∂Λ
∂y

∂Λ
∂z


= J−1



∂Λ
∂s

∂Λ
∂t

∂Λ
∂r


=

1

|J|



J11 J12 J13

J21 J22 J23

J31 J32 J33





∂Λ
∂s

∂Λ
∂t

∂Λ
∂r


(4.23)

where |J| indicates the determinant of the Jacobian matrix J. The components Jij are

complex functions of the components of J that can be obtained by inverting the 3 × 3

Jacobian matrix. In practice, the Jacobian is usually inverted numerically. For the two-

dimensional case the above equations are simplified substantially and permit analytic

manipulation of the resulting 2× 2 matrix. The Jacobian for the transformation of the

bar element is given by
∂Λ

∂r
= J−1∂Λ

∂s
=

1

∆

∂Λ

∂s
(4.24)

where

∆ =

(∂Υ̂T

∂s
x

)2

+

(
∂Υ̂T

∂s
y

)2

+

(
∂Υ̂T

∂s
z

)2


1
2

(4.25)

and the coordinate r is the physical coordinate along the axis of the bar. The mapping

for the shell elements follows the definitions in (4.21)-(4.23) though some terms in the

Jacobian are slightly more complex due to the presence of a normal vector in the basis

function definition given by equation (4.20).

In performing integrations over the element volume it is also necessary to transform

the integration variables and limits from the global coordinates to the local element

coordinates. The differential elemental volume transforms according to

dΩ = dx dy dz = |J| ds dt dr (4.26)

while for two-dimensional geometries the planar area is transformed by

dΩ = dx dy = |J| ds dt (4.27)

and

dΩ = r dΘ dr dz = 2π r |J| ds dt (4.28)

for axisymmetric geometries, where the circumferential dependence has been explicitly

evaluated to produce the 2π factor. In the axisymmetric case the radius r would be
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interpolated by r = ΥTr. The integration limits for the integrals transform to the limits

on the local coordinates s, t, r, i.e., −1 to +1.

In the above equations the s, t, r variables for a brick element have been used for the

purpose of explanation. Similar relations for a tetrahedral element can be derived by

replacing s, t, r with L1, L2 and L3. The L4 variable does not enter the formulas due to

the relation L1 + L2 + L3 + L4 = 1. Hybrid coordinates, such as those used in the prism

element, are treated in an analogous manner. The two-dimensional case also follows the

above procedures.

For the special case that involves the bar elements, the differential volume is rewritten

to allow for the explicit specification of cross-chapteral areas and thicknesses. Thus for

a bar the volume transforms according to

dΩ = |J| ds = A(s)∆ ds (4.29)

where again

∆ =

(∂Υ̂T

∂s
x

)2

+

(
∂Υ̂T

∂s
y

)2

+

(
∂Υ̂T

∂s
z

)2


1
2

and A(s) is the cross-chapteral area of the bar as a function of normalized distance along

the bar. For two-dimensional bars, A(s) = δ(s) · 1 where δ(s) is the bar thickness. In the

case of a three-dimensional shell, the differential volume is expressed as shown in (4.26);

the possibility of a variable thickness in the shell requires a full mapping for the shell

volume.

4.9 Matrix Evaluation

With the previous definitions it is now possible to derive a computational form for the

matrix coefficients involved in the finite element equations of Section 3. For purposes

of discussion, only a representative term from the matrix system will be considered in

detail; the evaluation of the remaining terms follows in a similar manner.

Consider a cross derivative component of the diffusion matrix given by equation (3.13)

as

K12 = Kxy =
∫

Ωe
kxy

∂Θ

∂x

∂Θ

∂y

T

dΩ (4.30)

which will be evaluated for a three-dimensional, twenty-node, brick element. From the

previous definitions in (4.23) and (4.26), equation (4.30) can be written as
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Kxy =
∫ +1

−1

∫ +1

−1

∫ +1

−1
kxy

1

|J|

[
J11

∂Θq

∂s
+ J12

∂Θq

∂t
+ J13

∂Θq

∂r

]
︸ ︷︷ ︸

∂Θq
∂x

·
[
J21

∂Θq
T

∂s
+ J22

∂Θq
T

∂t
+ J23

∂Θq
T

∂r

]
1

|J|︸ ︷︷ ︸
∂Θq

T

∂y

|J| dsdtdr (4.31)

where the Θq functions are given in (4.8). For an isoparametric (curve-sided) element

the components of Jij would be evaluated using Υ = Θq from equation (4.8).

The above integral is of the general form

I =
∫ +1

−1

∫ +1

−1

∫ +1

−1
f(s, t, r) dsdtdr (4.32)

where f(s, t, r) is a rational function of the normalized coordinates. All of the element

matrices are of this form and can be conveniently evaluated using a numerical quadrature

procedure. That is, the integral in (4.32) can be evaluated by the formula

I =
n∑
i=1

n∑
j=1

n∑
k=1

WiWjWkf(si, tj, rk) (4.33)

where Wi are weighting coefficients, si, tj, rk are quadrature points in the integration

interval and n is the number of quadrature points in the formula. For linear and quadratic

brick elements, COYOTE generally employs a product Gauss quadrature rule as shown

in (4.33) with n = 2 and n = 3, respectively; the two-dimensional quadrilaterals employ

a similar scheme with a double sum used in (4.33) and n = 2 for a linear element and

n = 3 for the quadratic elements. Other elements in the library are also evaluated using

quadrature formulas, though the forms of (4.32) and (4.33) are slightly different in these

cases. For elements using volume or area coordinates, the limits on the definite integral

in (4.32) run from 0 to 1. Also, these elements typically do not use a product rule but

rather a single summation over the total number of quadrature points. In COYOTE,

the tetrahedral elements are evaluated with a four point or a five point formula and the

triangular elements with a three point or a seven point rule. The prism uses a three

point or a seven point integration rule in the triangular plane and a 2 or 3 point Gauss

formula along the normalized axis. Integration rules for the bar and shell elements follow

these same procedures. Nonproduct Gauss rules [16] are also available for use with the

hexahedral elements and may offer some economic benefits over the product Gauss rules.

Application of the quadrature formula in (4.33) to the integral in equation (4.31)

produces the element coefficient matrix Kxy. Note that variable coefficients, such as the
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thermal conductivity, must be evaluated at the integration points if they vary over the

element. Constant coefficients are of course removed from the integral and play no role

in the quadrature procedure.

4.10 Element Boundary Conditions and Source Terms

In this chapter the construction of boundary conditions and volumetric source terms for

the element matrix equations is considered. Though the required flux vectors are numer-

ically evaluated in the same manner as the coefficient matrices, a number of additional

assumptions and details are necessary that require further comment.

4.10.1 Volumetric Sources

The flux vectors for the conduction equation consist of two parts: a part due to volumetric

sources and a part due to surface fluxes. Consider first the volumetric term,

FQ =
∫

Ωe
ΘQdΩ. (4.34)

The source term is allowed to vary over the element in an arbitrary manner, which is indi-

cated by Q(s, t, r). As given previously in equations (4.26)-(4.28), the elemental volume

can also be written in terms of the normalized coordinates. Thus, in a computational

form (4.34) becomes

FQ =
∫ +1

−1

∫ +1

−1

∫ +1

−1
ΘQ(s, t, r)|J| dsdtdr (4.35)

for a three-dimensional brick element; similar forms are derivable for the other elements

in two and three dimensions. The integral in (4.35) can be evaluated with a standard

numerical quadrature rule to produce the force vector FQ. To accomplish the numerical

integration, the volume source must be evaluated at the quadrature points. If the volume

source depends on other variables, such as the temperature, temperature rate, spatial

location, etc., these quantities can be provided at the quadrature points through use of

the element basis functions.

4.10.2 Surface Fluxes

The remaining flux vectors in the conduction equation arise from surface fluxes dis-

tributed along element boundaries. These terms need only be considered for those el-
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Figure 4.8: Nomenclature for element surface computations.

ement sides coinciding with the “exterior” boundaries of the problem domain; contri-

butions from interior element boundaries are generally cancelled by adjoining elements.

The surface flux vector is given by

F =
∫

Γe
Θqini dΓ =

∫
Γe

Θ(f q − qc − qr) dΓ (4.36)

where Γe is the surface of the element, qini is the heat flux normal to the surface and the

remaining terms are defined in (2.4)-(??).

The computation of the indicated surface integrals are most easily carried out in

the normalized or natural coordinate system for the face (edge) of an element. This

requires that the elemental surface area (edge length) dΓ, be related to the local surface

coordinates. Consider the typical quadrilateral element face shown in Figure 4.8 where

the vectors e1 and e2

are defined as being tangent to the curvilinear coordinates, ss and ts. The e vectors

are not necessarily unit vectors; the ss and ts coordinates are assumed to be natural

coordinates for the element face. The elemental area dΓ in terms of the global coordinates

x, y, z is related to an elemental area in surface coordinates by

dΓ = |Js| dssdts (4.37)
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where Js is the Jacobian of the coordinate transformation and | · | indicates the de-

terminant. The determinant of the Jacobian can be written in terms of the e vectors

as

|Js| = |e1 × e2| =
[
(e1 · e1)(e2 · e2)− (e1 · e2)2

]1/2
. (4.38)

The e vectors can be expressed in terms of the global coordinates by

e1 =



∂x
∂ss

∂y
∂ss

∂z
∂ss


; e2 =



∂x
∂ts

∂y
∂ts

∂z
∂ts


(4.39)

Using the parametric mapping concept allows

x = Υ̂Tx ; y = Υ̂Ty ; z = Υ̂Tz (4.40)

where the ˆ notation indicates the restriction of the interpolation function to an element

face (edge). The functions Υ̂ may be either linear or quadratic depending on the type of

mapping used to describe the element geometry. Using (4.40) in (4.39) then

e1 =



∂Υ̂T

∂ss
x

∂Υ̂T

∂ss
y

∂Υ̂T

∂ss
z


; e2 =



∂Υ̂T

∂ts
x

∂Υ̂T

∂ts
y

∂Υ̂T

∂ts
z


(4.41)

Equations (4.38) and (4.41) provide a means for computing |Js|, thus allowing the trans-

formation in (4.37) to be employed. Note that in two dimensions the above relations

simplify and the elemental length of an element edge is given by

dΓ =

(∂Υ̂T

∂s
x

)2

+

(
∂Υ̂T

∂s
y

)2


1
2

ds = ∆ ds (4.42)

where s is the coordinate along the edge of an element. Axisymetric geometries require

integration over an element edge that is rotated through an angle of 2π and (4.42) should

therefore be expressed as

dΓ =

(∂Υ̂T

∂s
r

)2

+

(
∂Υ̂T

∂s
z

)2


1
2

r dΘ ds = 2π∆ r ds (4.43)

where r is the radius for the element edge and would be interpolated by r = ΥTr. For

three-dimensional edges or surfaces on shell or bar elements, the Jacobian in (4.42) is

modified to include the z coordinate.
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To complete the specification of the integrand in (4.38) the variation of qini with ss
and ts is required. From the boundary condition definitions in equations (2.4)-(??) the

normal heat flux consists of three components

qini = f q − qc − qr = f q − hc(T − Tc)− hr(T − Tr) (4.44)

For calculation of the boundary fluxes it is assumed that the applied flux, f q, convective

and radiative coefficients, hc, hr and reference temperatures Tc, Tr are known functions

of the surface (edge) coordinates, ss, ts. Then using the standard surface (edge) interpo-

lation for the temperature, the heat flux vector can be written for the three-dimensional

case as

F(T) =
∫ +1

−1

∫ +1

−1
Θ̂f q(ss, ts)|Js| dssdts

−
∫ +1

−1

∫ +1

−1
Θ̂hc(ss, ts)Θ̂

T |Js| dssdts (T−Tc(ss, ts))

−
∫ +1

−1

∫ +1

−1
Θ̂hr(ss, ts)Θ̂

T |Js| dssdts (T−Tr(ss, ts)) (4.45)

or

F(T) = Fq −HcT + HcTc −HrT + HrTr. (4.46)

The integrals in (4.45) are evaluated using a numerical quadrature procedure over the

element surface; in two dimensions only integrals along an element edge need to be con-

sidered. Variable coefficients, such as f q, hc, hr, etc., must be evaluated at the quadrature

points and may depend on interpolated variables such as temperature, spatial location,

etc. Note that some of the terms in F contain unknown element temperatures (HcT

and HrT); for solution purposes these terms are moved from the flux vector to the

left-hand-side of the matrix equation in (3.10) and added to the diffusion matrix K.

4.10.3 Internal Surface Fluxes

The flux vectors considered in the previous chapter were derived from boundary condi-

tions that are applied to the external boundaries of the heat conduction problem. As

shown by equation (2.9), it is sometimes appropriate to consider “internal” flux condi-

tions associated with surface contact at a material interface. The computational form for

this internal boundary condition is derived in the same manner as presented above. Also,

these terms need only be constructed for element surfaces that are part of the contact

surface.

The internal or gap surface flux vector for the master surface is given by

Fg(T) = −
∫

Γm
Θqg dΓ = −

∫
Γm

Θhg(Tm − Ts) dΓ (4.47)
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Figure 4.9: Nomenclature for contact resistance formulation.

where Γm is the contact area for the master surface, hg is an effective heat transfer

coefficient and Tm and Ts are temperatures on each side of the contact surface. The

numerical implementation of this condition requires that “master” and “slave” sides of

the contact surface be defined. Also, since unknown temperatures occur on both sides

of the gap, each contact surface must be processed in turn as a “master” surface; the

opposite or “slave” surface provides an estimate of the reference temperature for heat

transfer across the gap. For generality, the situation shown in the two-dimensional sketch

of Figure 4.9 is considered, where the nodes and elements on each side of the contact

surface are not aligned. If a node on the master surface does not have on image on the

slave surface, then hg is set to zero for that location and the contact heat flux for that

node is not evaluated.

In a computational form the flux vector for the gap can be written as

Fg(T) = −
∫ +1

−1

∫ +1

−1
Θ̂hg(ss, ts)Θ̂

T|Js|dss dts(Tm −Ts) (4.48)

or in matrix form

Fg(T) = −HgTm + HgTs (4.49)

In developing (4.49) the contact coefficient hg was assumed to vary in a known manner

over the contact surface. The vector Tm corresponds to unknown nodal point temper-
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atures on the master surface; the term HgTm = HgT is combined with the diffusion

matrix K during the solution process. The temperatures in the vector Ts are not gener-

ally nodal point temperatures but rather interpolated temperatures on the slave surface,

adjacent to the master surface nodes. The temperature vector Ts is obtained by (basis

function) interpolation on the slave surface; it is assumed that the slave surface tem-

peratures can be interpolated by the same functions as used to describe temperature

variations on the master surface. Since the temperature fields along the contact surface

are generally unknown, this type of interface condition must be solved via an iterative

process.

The above formulation was carried out for the general case where the master and slave

nodes were not aligned. This does not preclude the use of a standard mesh where there is a

direct, one-to-one correspondence between nodes along the contact surface. In addition

to providing a generalized contact resistance model, the above formulation provides a

simple method for connecting regions with different mesh spacings. For “large” values

of hg, equation (4.47) forces the temperature distributions on each side of the contact

surface to be essentially equal. This is the thermal equivalent of the slide line algorithms

used in solid mechanics [17]. Section 5.8 outlines the algorithm used to determine the

occurrence of contact and the spatial location of master nodes on the slave surface.

4.10.4 Specified Temperature Boundary Conditions

In addition to the (“natural”) boundary conditions specified by the boundary integrals

presented above, “essential” boundary conditions specifying particular values of the tem-

perature must also be considered. Application of a specified temperature boundary con-

dition results in the field equation for that particular nodal point temperature being

replaced by a constraint equation that enforces the proper boundary value. COYOTE

uses a penalty method [18] to implement this type of constraint condition.

4.11 Matrix Equation

As a result of the manipulations outlined in the previous chapters, the element matrices

and boundary conditions can be constructed for a variety of element types. An assembly

process, such as indicated by equation (3.12) leads to the general matrix equation as

shown in (3.10) or (3.13). The equation in (3.10) can be made more specific by considering

the individual terms from various types of boundary conditions. Using (4.46) and (4.49),

then (3.10) becomes

M(T)Ṫ + K(T)T = FQ(T) + Fq −HcT + HcTc
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−HrT + HrTr −HgT + HgTs (4.50)

Rearranging (4.50) allows the final form of the discrete system to be written as

M(T)Ṫ + K(T)T = F(T) (4.51)

with

M = M

K = K + Hc + Hr + Hg

F = FQ + Fq + Fc + Fr + Fg

and

Fc = HcTc

Fr = HrTr

Fg = HgTs

The equation in (4.51) represents the finite element analogue of the heat conduction

problem that must be solved for the domain of interest. When convective terms are re-

quired, the K matrix in (4.51) is modified to include the unsymmetric, velocity dependent

advection term.



Chapter 5

Solution Procedures

The major computational effort in any finite element procedure occurs in the solution of

the assembled matrix equations that describe the discretized problem. This is especially

true in the case of highly nonlinear equations or problems with coupled physical phe-

nomena, both of which can be found in the present case. In addition to computational

efficiency these characteristics also introduce questions regarding the ability to achieve a

solution, i.e., convergence for a given set of data. The choice of a solution algorithm is

therefore a critical element in the overall utility, robustness and efficiency of a computer

code such as COYOTE.

As described previously, the basic matrix problem of concern can be written as

M(T)Ṫ + K(T)T = F(T). (5.1)

where M represents the capacitance matrix, K contains the diffusion terms and F pro-

vides the boundary and volumetric forcing functions. In the most general case, each

term in (5.1) may depend explicitly on the temperature due to variable coefficients or

thermal properties. A dependence on other variables, such as time or spatial location,

is also possible, though this does not affect the nonlinearity of the system. In all cases

the matrices are large, sparse, and symmetric in their structure; a proper ordering of

the equations will produce a banded matrix system. The inclusion of the advective term

alters these characteristics slightly by making the system unsymmetric; the nonlinearity

and matrix structure remain the same.

In the following chapters the solution algorithms for treating the steady and time-

dependent forms of (5.1) are outlined. The solution procedures are defined in general

terms and are meant to be applied to all of the classes and subclasses of diffusion and

advection-diffusion problems defined by equation (5.1). No further explicit consideration

43
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of the adevction-diffusion case will be given as it is a standard subset of the general

problem. Most of the algorithms described lead to linear, algebraic equations that must

be solved at each iteration or time step of the solution process. The matrix solution

methods used in COYOTE are also discussed in this chapter.

5.1 Steady-State Algorithms

The time-independent form of (5.1) is

K(T)T = F(T) (5.2)

which is recognized as a system of nonlinear, algebraic equations. Consider first the

case where K and F are not functions of T. In this situation (5.2) reduces to a linear

matrix equation which can be solved directly, without iteration. When (5.2) retains its

nonlinear form, an iterative technique is required. COYOTE currently employs a single

type of iterative method, though it may be combined with other techniques to expand

the possibilities for achieving a steady state solution.

5.1.1 Successive Substitution Method

A particularly simple iterative method with a large radius of convergence is the successive

substitution (Picard, functional iteration) method described by

K(Tn)Tn+1 = F(Tn) (5.3)

where the superscript indicates the iteration level. For the mildly nonlinear behavior

typically found in heat conduction problems, the rate of convergence of (5.3) is generally

good, despite being a first-order method. An improvement in convergence rate can

sometimes be realized by use of a relaxation formula where

K(Tn)T? = F(Tn) (5.4)

and

Tn+1 = αTn + (1− α)T? 0 ≤ α < 1.

The above methods are adequate for the large majority of thermal diffusion problems

since nonlinearities associated with material properties and boundary conditions are usu-

ally quite mild. In the few instances where nonlinear behavior causes the above schemes

to converge slowly or diverge, alternate methods could be developed. One popular choice
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is the use of second-order methods, such as Newton’s method. In the present application

Newton’s method has not been implemented; the construction of a Jacobian matrix for

nonanalytic specifications of material properties and boundary conditions is not believed

to be cost effective. However, for more complex nonlinearities, such as enclosure radia-

tion, Newton’s method is viewed as an essential technique. Section 5.5 describes the use

of Newton’s method for the enclosure radiation problem.

5.1.2 Continuation Method

Failure to achieve a converged solution using (5.3) or (5.4) can often be ascribed to the use

of a poor initial guess (T0) for the iterative algorithm. There are two general approaches

to the problem of generating good initial estimates for a solution vector and both involve

some type of “tracking” of the solution. The first procedure is simply the method of

false transients in which the solution is followed through use of a time parameter. The

transient algorithms described in a later chapter are candidates for this approach.

A second method consists of incrementally approaching the final solution through a

series of intermediate solutions. These intermediate solutions may be of physical interest

or may simply be a means to obtain the required solution. The formal algorithms used to

implement this procedure are termed continuation methods and can be used with either

of the iterative methods in (5.3) and (5.4).

Assume that the solution for (5.2) depends continuously on some real parameter, λ.

For heat conduction problems, λ could be the magnitude of a volumetric source or the

magnitude of a boundary condition. Then (5.2) can be written in general as

K(T, λ)T = F(T, λ) (5.5)

which suggests the zeroth order continuation method

K(Tn
λ , λm)Tn+1

λ = F(Tn
λ , λ

m) (5.6)

where (5.6) is solved for a series of problems with increasing values of the continuation

parameter λm = λm−1 + ∆λ. The converged solution, Tλ, at one value of λ is used as

the starting solution at the next higher value of λ; the iterative method in (5.3) or (5.4)

is used at each value of λ to achieve a converged solution. This technique is available in

COYOTE and can be used effectively with some very nonlinear problems.

5.1.3 Convergence Criteria

The use of an iterative solution method necessitates the definition of a convergence and

stopping criteria to terminate the iteration process. The usual measure of convergence
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is a norm on the change in the solution vector between successive iterations. COYOTE

employs the discrete RMS norm defined by

dn+1 =

 1

Nnodes · T 2
max

Nnodes∑
i=1

(
Ti(n+1) − Ti(n)

)2

 1
2

(5.7)

In the definition in (5.7) Nnodes is the total number of nodal points and Tmax is an

appropriate temperature scale for the problem; Tmax may be specified or computed from

the temperature solution vector.

The criteria for terminating the iteration process is based on a user supplied tolerance.

The iterative algorithm is terminated when the following inequality is satisfied

dn+1 ≤ εT (5.8)

where εT is set by the user and has a typical value of 0.0001. The iterative process may

also be terminated after a fixed number of iterations. This option acts as a backup criteria

to prevent very slowly convergent or divergent problems from wasting computation time.

5.2 Transient Algorithms

Equation (5.1) represents a discrete space, continuous time approximation to the original

system of partial differential equations. A direct time integration procedure replaces

the continuous time derivative with an approximation for the history of the dependent

variables over a small portion of the problem time scale. The result is an incremental

procedure that advances the solution by discrete steps in time. In constructing such a

procedure, questions of numerical stablity and accuracy must be considered.

A large body of literature is available on possible time integration schemes for equa-

tions of the diffusion type. Both implicit and explicit methods, as well as mode super-

position, have been used successfully. Each of these approaches have their own strengths

and weaknessess, many of which are problem dependent. In order to provide solution ca-

pabilities for as wide a range of problems as possible, three different integration schemes

are used in COYOTE. Two types of implicit methods are available, both of which make

use of a predictor/corrector strategy to improve efficiency and accuracy. These proce-

dures were originally developed by Gresho, et al. [19] and are used in COYOTE with

only minor modifications. The third integration scheme is an explicit procedure that

can be used effectively with the lower order elements available in the code. All of the

integration methods may be used with either a fixed time step or an adaptive time step

selection algorithm.
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5.2.1 Forward/Backward Euler Integration

The first-order implicit integration method used in COYOTE employs a forward Euler

scheme as a predictor with the backward Euler method functioning as the corrector step.

Omitting the details of the derivation, the application of the explicit, forward Euler

formula to equation (5.1) produces

MTn+1
p = MTn + ∆tn

[
F(Tn)−K(Tn)Tn

]
. (5.9)

This can be written in a form that is more suitable for computation by replacing the

bracketed term with a rearranged form of (5.1) to produce

Tn+1
p = Tn + ∆tnṪ

n. (5.10)

In equations (5.9) and (5.10) the superscript indicates the timeplane, the subscript p

denotes a predicted value and ∆tn = tn+1 − tn. By using the form shown in (5.10) a

matrix inversion of M is avoided; the “acceleration” vector Ṫn is computed from a form

of the corrector formula as shown below.

The corrector step of the first-order scheme is provided by the backward Euler (or

fully implicit) method. When applied to equation (5.1) this implicit method yields

MTn+1 = MTn + ∆tn
[
F(Tn+1)−K(Tn+1)Tn+1

]
(5.11)

or in a form more suitable for computation[
1

∆tn
M + K(Tn+1)

]
Tn+1 =

1

∆tn
MTn + F(Tn+1). (5.12)

The implicit nature of this method is evident from the form of (5.12), since it is in effect,

a nonlinear, algebraic system for the variables T at timeplane n + 1.

The solution to (5.12) at timeplane n + 1 can be achieved by an iteration procedure

such as Picard’s method. The rate of convergence of Picard’s method is greatly increased

if the initial solution estimate is “close” to the true solution. The solution predicted from

(5.9) provides this initial guess for the iterative procedure in a cost-effective manner.

5.2.2 Adams-Bashforth/Trapezoid Rule Integration

An implicit integration method that is second-order accurate in time can be developed

along the same lines as described above. A second-order equivalent to the forward Euler

method is the variable step, Adams-Bashforth predictor given by

Tn+1
p = Tn +

∆tn
2

[(
2 +

∆tn
∆tn−1

)
Ṫn −

(
∆tn

∆tn−1

)
Ṫn−1

]
(5.13)
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where ∆tn = tn+1 − tn and ∆tn−1 = tn − tn−1. This formula can be used to predict

the solution vector given two “acceleration” vectors from previous timeplanes; no matrix

solution is required.

A compatible corrector formula for use with (5.13) is available in the form of the

trapezoid rule. When applied to equation (5.1) the trapezoid rule produces[
2

∆tn
M + K(Tn+1)

]
Tn+1 =

2

∆tn
MTn + MṪn + F(Tn+1). (5.14)

Equation (5.14) is observed to be a nonlinear, algebraic system for the vector Tn+1 and

can again be solved using an iterative procedure such as Picard’s method.

5.2.3 Implicit Integration Procedures

The integration formulas outlined above form the basis for the implicit solution of time-

dependent problems in COYOTE. The similarity of the first- and second-order methods

makes it possible to include both procedures in a single, overall algorithm. The major

steps in the time integration procedure are outlined here.

At the beginning of each time step it is assumed that all of the required solution

and “acceleration” vectors are known and the time increment for the next step has been

selected. To advance the solution from time tn to time tn+1 then requires the following

steps:

1) A tentative solution vector, Tn+1
p , is computed using the predictor equations (5.10)

or (5.13).

2) The corrector equations (5.12) or (5.14) are solved for the “true” solution, Tn+1.

This involves the iterative solution of (5.12) or (5.14) via Picard’s method. The

predicted values Tn+1
p are used to initialize the equation for the iteration procedure.

3) The “acceleration” vectors are updated using the new solution Tn+1 and the “in-

verted” forms of the corrector formulas. For the first-order method the acceleration

is computed from the backward Euler definition

Ṫn+1 =
1

∆tn

(
Tn+1 −Tn

)
while the second-order accelerations are derived from the trapezoid rule

Ṫn+1 =
2

∆tn

(
Tn+1 −Tn

)
− Ṫn.
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4) A new integration time step is computed. The time step selection process is based

on an analysis of the time truncation errors in the predictor and corrector formulas

as described in Section 5.2.4. If a constant time step is being used, this step is

omitted.

5) Return to step 1 for next time increment.

In actual implementation the Picard iteration process in step 2 is not carried to

absolute convergence. Rather, a one-step correction is employed as advocated in [19].

This procedure is quite efficient and can be very accurate provided the time step is

suitably controlled.

5.2.4 Time Step Control

Both of the implicit time integration procedures available in COYOTE can be used with

a fixed, user specified time step or a time step that changes only at certain points during

the integration interval. However, the a priori selection and modification of a reasonable

integration time step can be a difficult task, especially for a complex problem. One of

the benefits of using the predictor/corrector algorithms described here is that it provides

a rational basis for dynamically selecting the time step.

The detailed derivation of the time step selection formula is omitted here. The reader

interested in further details is referred to [19]. The general ideas for the time step selec-

tion process come from the well-established procedures for solving ordinary differential

equations. By comparing the time truncation errors for two time integration methods

of comparable order, a formula can be developed to predict the next time step based

on a user specified error tolerance. In the present case, the time truncation errors for

the explicit predictor and implicit corrector steps are analyzed and provide the required

formulas.

The time step estimation formula is given by [19] as

∆tn+1 = ∆tn

(
b · εt

dn+1

)m
(5.15)

where m = 1/2, b = 2 for the first-order method and m = 1/3, b = 3(1 + ∆tn−1/∆tn) for

the second-order scheme. The user specified error tolerance for the integration process is

εt, which has a typical value of 0.0001. The quantity dn+1 is an appropriate norm on the

integration error, which is defined as the difference between the predicted solution and
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the corrected value. In COYOTE the following RMS norm is used

dn+1 =

 1

Nnodes · T 2
max

Nnodes∑
i=1

(
T

(n+1)
i − T

(n+1)
i p

)2

 1
2

(5.16)

where Nnodes is the number of nodes in the mesh and Tmax is an appropriate maximum

temperature for the problem that may be either specified or computed from the solution

vector.

Unlike the procedure described in [19], COYOTE always uses the newly computed

time step derived from (5.15). If ∆tn+1 ≤ 0.5∆tn a warning message is given to indicate

a large reduction in the time step has occurred. However, the previous time step is not

rejected nor recomputed.

5.2.5 Initialization

The predictor equations (5.10) and (5.13) require that one or more acceleration vectors be

available at each timeplane in order to estimate a new solution vector. At the beginning of

a transient solution these vectors are not generally available and thus a special starting

procedure must be used. The approach taken in COYOTE is to use the dissipative,

backward Euler method for the first few steps and then switch to either of the standard

predictor/corrector methods. This procedure has the advantage that any nonphysical

features of the numerical model are quickly damped by the backward Euler scheme.

For the first time step, the implicit, backward Euler scheme is used alone; the second

step uses a forward Euler predictor and backward Euler corrector. Both of these steps

use a fixed, user supplied time step. At the third step, the usual predictor/corrector

integration procedure begins and automatic time step selection is started, if this option

has been requested. The initial time step supplied by the user to start the problem should

be very conservative to prevent large time step reductions when the automatic selection

procedure takes control.

5.2.6 Forward Euler Integration

The explicit integration method used in COYOTE is based on the first-order, forward

Euler method. This algorithm was previously defined in (5.10) and is written here as

MTn+1 = MTn + ∆tn
[
F(Tn)−K(Tn)Tn

]
. (5.17)
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Inverting the capacitance matrix M allows (5.14) to be written in a computationally

effective form as

Tn+1 = Tn + ∆tn M
−1
[
F(Tn)−K(Tn)Tn

]
= Tn + ∆tn M

−1
Feff . (5.18)

As written in (5.18), this algorithm does not requires the solution of a matrix system but

simply the construction of an effective flux vector from known data and a matrix-vector

product.

The practical utility of (5.18) relies on two aspects of the algorithm. First, the

inverse of the effective capacitance matrix must be easily obtainable, i.e., it must be

computationally inexpensive. Also, the explicit nature of the method means that the

stability of the algorithm must be considered when choosing an integration time step.

5.2.7 Matrix Diagonalization

A particular feature of the finite element method when used for time-dependent problems

is the inherent coupling that occurs between nodal point time derivatives. By inspecting

the form of the element level capacitance matrix, as shown in (3.13), it is clear that M

is not a simple diagonal matrix but has a banded structure. This structure carries over

to the global matrix, M.

The inverse to M could be directly computed for use in the explicit algorithm in

(5.18). Unfortunately, the inverse of a banded matrix is a full matrix; the generally large

size of M for two and three-dimensional problems precludes the use of such an approach.

For M
−1

to be computed efficiently, M must have a diagonal form. Several strategies

for diagonalizing M have been proposed in the literature [14]. The approach taken in

COYOTE is to use the row-sum technique to approximate M at the element level. That

is, the diagonal form of the element matrix, MD, is formed by the components given by

mD
ii =

N∑
j=1

mij ; mD
ij = 0 i 6= j (5.19)

where N is the number of degrees of freedom in the element and mij are components of

the original capacitance matrix; the global matrix will also have the same diagonal form.

In the algorithm given in (5.18) the term M
−1

is replaced with M
−1
D , which is easily

computed from 1/mD
ii .

Diagonalization (or “lumping”) techniques, such as the row-sum method, have been

widely used and investigated. It is known that the temporal response of the discretized

equations is altered by such techniques, though good results can still be obtained with
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careful use. A major limitation to diagonalization (and row-sum in particular) is its

restriction to low-order (linear) finite element approximations. Higher order basis func-

tions generally produce poor results when used in a diagonalized form. This result implies

that the explicit integration procedures in COYOTE should only be used with the linear

elements available in the code.

5.2.8 Stability and Time Step Control

Explicit integration methods are conditionally stable and thus require limits on the size

of the integration time step. Conventional stability analyses of the forward Euler scheme

for a diffusion equation [20] produce a time step restriction of the following form

λGmax∆t ≤ 2 (5.20)

where λGmax is the largest eigenvalue for the matrix system M
−1
D K from equation (5.18).

The largest eigenvalue for the system can be bounded by the largest element eigenvalue,

which in the present case is proportional to 1/h2 with h being a representative element

dimension. From these results it is clear that the time step restriction for the explicit

method is quite severe especially on highly refined meshes.

An effective control of the time step for the explicit method relies directly on the

ability to evaluate the largest element eigenvalue in the system. Exact element eigenvalues

could be computed by a number of methods but this type of accuracy and computational

expense is not warranted for most applications. Instead, simple eigenvalue estimates that

are rapidly computed from a formula are preferred. Such formulas have been derived for

bar, quadrilateral and hexahedral elements with a linear temperature approximation

[21,22], though these results are restricted to cases where one-point quadrature is used to

evaluate the finite element integrals. For elements with multple integration points, such

as used in COYOTE, the theory and estimation procedure due to Lin [23] is required.

The largest element eigenvalue can be bounded by the sum of the largest eigenvalues at

each integration point. That is

λGmax ≤ λEmax ≤
Nip∑
i=1

λimax (5.21)

where Nip is the number of integration points in the element. As shown in [23], the

nonzero eigenvalues at an integration point can be found from the following matrix

S =
w

m
kBBT (5.22)

where w is the quadrature weight factor, m is the lumped capacitance at the integration

point, k is the conductivity matrix and B is the temperature gradient operator defined
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by

B =



∂Θ
∂x

∂Θ
∂y

∂Θ
∂z


. (5.23)

The vector Θ is the element interpolation function for the temperature. The maximum

eigenvalue of S is readily computed for each integration point since the operators in (5.22)

are all available from the construction of the element matrices.

Further details of the derivation of (5.21) and (5.22) can be found in [21,23]. COYOTE

uses (5.22) to estimate λimax and the bound in (5.21) to estimate the maximum system

eigenvalue; the system eigenvalue and equation (5.20) allow computation of a usable time

step. The maximum stable time step computed from (5.20) can be also be scaled by the

user to ensure a conservative time integration strategy.

5.3 Matrix Solution Procedures

When most of the algorithms of the previous chapters are applied at a given iteration or

time step, the result is a matrix equation of the form

Ax = b (5.24)

In the problems considered here the matrix A is large, sparse, banded and symmetric;

an unsymmetric system may occur in some applications. A solution to (5.24) can be

achieved by either an iterative or direct method. Historically, direct methods, such as

the frontal method or other forms of Gauss elimination, have been the solution methods

of choice for most finite element applications. However, the computer memory and CPU

inefficiency of direct methods with respect to large, three-dimensional problems, has

produced renewed interest in iterative methods for (5.24).

The solution methods used in COYOTE are based on a preconditioned conjugate

gradient (PCG) algorithm. The matrix solution technique is embedded in a PCG li-

brary package that was developed by Schunk and Shadid [24]. For application to the

heat conduction problem, any of three different preconditions can be invoked: Jacobi,

Polynomial and the Incomplete Choleski method. The unsymmetric convection problem

requires an iterative method such as the generalized minimum residual method (GM-

RES). The fully coupled conduction-radiation problem (see Section 5.5) also requires an

unsymmetric method such as GMRES. These unsymmetric methods may be used with
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any of several preconditioners; all of the available preconditioners are derived from the

assembled, global matrix, A. To accommodate the storage requirements of A, a standard

sparse matrix format is used [25] that only records the nonzero entries of the A matrix.

Complete details on the iterative solvers available in COYOTE can be found in [24].

5.4 Radiation View Factor Algorithms

When enclosure radiation is coupled to the conduction problem, a number of auxiliary

computations must be included in the solution process. As defined in Section 2.3, the net

radiation method requires the evaluation of view factors for all radiating surfaces in the

enclosure. For geometries that are stationary, this computation need only be performed

once while radiation problems that include regions with specified motions must have the

view factors updated periodically. COYOTE employs a number of different methods

for the actual view factor computation, all of which are embedded in the companion

computer code, CHAPARRAL [26]. CHAPARRAL was designed to take advantage of

some well established view factor techniques as well as implement some newer, more

efficient procedures. Full details of the algorithms in CHAPARRAL and use of the code

libraries are available in [26].

The basic view factor definition is given by (15) as

Fk−j =
1

Ak

∫
Ak

∫
Aj

cos θk cos θj
πS2

dAj dAk (5.25)

which is recognized as a relation that depends only on the geometry of the enclosure sur-

faces; the possibility of third surface shadowing must also be considered in the evaluation

of (5.25). Three standard methods have been developed for evaluating Fk−j and these

are generally known as a) the double area summation method [8], b) the contour or line

integration method [8], and c) the semi-analytic or Mitalas and Stephenson method [27].

Each of these techniques is optimal for specific orientations of the view factor surfaces.

The computer code FACET [27] employs all of these methods for view factor computation

in conjunction with a selection criteria for switching between techniques. The FACET

code has been made part of CHAPARRAL and can be accessed as an option for two-

and three-dimensional geometries.

A significant difficulty with the procedures cited above is their poor efficiency for

three-dimensional problems with large numbers of surfaces. CHAPARRAL has an al-

ternate procedure available for these situations which is based on a hemicube algorithm

[26,28]. This method peforms very well, with good accuracy, on large-scale problems;

the hemicube method is not available for two-dimensional applications. Details of the
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technique and its implementation can be found in [26]. A comparison of all of the above

view factor methods has been reported in [28].

5.5 Radiation Solution Algorithms

The enclosure radiation problem was outlined in Section 2.3 and resulted in two equations

of the following form
N∑
j=1

[δkj − (1− εk)Fk−j] q
o
j = εkσT 4

k (5.26)

qk = qok −
N∑
j=1

Fk−jq
o
j . (5.27)

When the surface temperatures for all surfaces are known, equation (5.26) forms a set of

linear algebraic equations for the unknown, outgoing surface fluxes, qoj . That is, equation

(5.26) can be written as

A(T)q = Fσ(T) (5.28)

where A is a function of T due to the possible dependence of surface emissivities on

temperature. The matrix A is a full matrix due to the surface to surface coupling repre-

sented by the view factors Fk−j. This characteristic, along with the possible temperature

dependencies, suggests the use of an iterative solution method for (5.28) rather than a

direct matrix factorization.

COYOTE employs a Gauss-Seidel or progressive refinement method to solve (5.28)

for the components of q; these solution algorithms are located in the CHAPARRAL

code and are explained in more detail in [26]. When the q values are available, equation

(5.27) is then used to compute the effective flux to the surface. The surface fluxes

provide boundary conditions to the finite element model for the conduction process.

When new surface temperatures are computed, due to either a new time step or iteration

cycle, the above process is repeated to obtain a new surface flux condition. The surface

temperatures used in the above computation must be uniform over each surface in order

to satisfy the conditions of the radiation model. In COYOTE it is assumed that each

surface in the radiation problem corresponds to a face or edge of a finite element. The

uniform surface temperature needed for use in (5.26) is obtained by combining (averaging)

the nodal point temperatures on the appropriate element face or edge.

The decoupled, cyclic solution procedure outlined above is very reliable and efficient

for time-dependent problems since the change in surface temperature over a time step is

generally small and convergence is rapid. However, when time-independent problems are

considered, the decoupled nature of the process leads to significant convergence problems.
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The basic difficulty is the dependence of the radiative flux on the fourth power of the

surface temperature; modest changes in temperature between iterations can lead to very

large changes in surface flux which produce even larger variations in surface temperature.

This nonlinear feedback can be controlled to a very limited extent by relaxation tech-

niques such as found in equation (5.4). The proper resolution of this problem is found in

one of two approaches - a (false) transient technique as described above that always stays

close to the true solution or a more fully coupled solution technique that simultaneously

solves for the temperature and surface flux.

For time independent problems the finite element form of the conduction and radiation

equations can be expressed as

K(T)T + Bq = F(T) (5.29)

and

A(T)q = Fσ(T) = D(T)T (5.30)

In the conduction equation (5.29) the boundary conditions involving the radiative surface

fluxes have been removed from the F vector and written explicitly on the left-hand-side of

the equation. Also, the right-hand-side of the net radiation equation has been linearized

and made explicit in the surface temperature. The solution of this equation set for T

and q could, in theory, be accomplished by solving (5.30) for q (inverting the A matrix)

and substituting the result into (5.29), which would form a very nonlinear equation for

the temperature. The fact that A is usually a large (full) matrix precludes the use of this

approach and forces consideration of simultaneous solution methods, such as Newton’s

method. Rewritting (5.29) and (5.30) as
RT

Rq

 =


K(T)T + Bq

−D(T)T + A(T)q

 =


F(T)

0

 (5.31)

This nonlinear system can be solved via Newton’s method with the definition

[Jn]


∆Tn+1

∆qn+1

 =


∂RT
∂T

∂RT
∂q

∂Rq
∂T

∂Rq
∂q




∆Tn+1

∆qn+1

 = −


RT

n

Rq
n

 (5.32)

The iterative solution procedure specified in (5.32) has very good convergence properties

and is available as an option in COYOTE II. Note that the Jacobian is constructed

to properly handle the nonlinearities that occur in the coupling between conduction

and enclosure radiation, i.e., the third power dependence on temperature found in the

D matrix. The Jacobian does not account for other temperature dependencies, such

as material property or boundary condition variations, since these are linearized and
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evaluated at the previously computed temperature. Though the method in (5.32) is

very reliable, there is a significant penalty in computational cost. The matrix problem

is increased in size by the total number of enclosure surfaces, which for complex, three-

dimensional geometries may be very large. Also, the matrix problem is now unsymmetric

and requires an iterative solution method such as GMRES. Further details of this solution

option and its efficiency can be found in [29].

5.6 Chemical Reaction Solution Algorithm

The presence of reactive materials in the conduction problem requires that a number

of nonlinear conservation equations be solved for the chemical species in conjunction

with the temperature field. The general formulation for the chemistry problem was

outlined in Section 2.4. The mathematical nature (stiffness) of the kinetic equations

dictate that for computational efficiency, the chemistry and thermal diffusion equations

be solved independently. In COYOTE the solution process is formally based on an

operator splitting technique [30].

In the present application, operator splitting is particularly effective due to the form

of the kinetic equations. Since diffusion of the species is neglected, the kinetic equations

have no spatial gradients and reduce to ordinary differential equations that can be defined

locally on each finite element. In essence, the chemical species can be viewed as state

variables for each element and can be solved on an element-by-element basis. In COY-

OTE, all species equations are defined at the integration points for each element. During

a time step, the chemistry solution is advanced first using a fixed (frozen) temperature

field; the temperature field is subsequently advanced over the same time interval using

the recently evaluated (frozen) chemistry result. If a predictor/corrector time integration

method is employed, the frozen temperature field used for the chemistry solution is the

temperature produced from the predictor step. When a predictor equation is not em-

ployed for time integration, the last available temperature field is used for the chemistry

solution.

The inherent stiffness of the kinetic equations requires that special integration meth-

ods be used to advance the chemistry solution in time. COYOTE makes use of the stiff

ordinary differential equation (ODE) routines developed by T. R. Young in the pack-

age, CHEMEQ [31]. The techniques used in CHEMEQ were developed specifically for

chemical reaction systems and are based on a combination of classical predictor/corrector

methods and asymptotic methods for the stiff components of the system. The rate equa-

tions for each reactive element are solved using their own integration time step over the

global time step of interest. The most restrictive chemistry time step for all of the reac-
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tive elements is used to regulate the choice of the thermal diffusion time step. The choice

of the thermal diffusion time step is computed from

∆tn+1 = min{∆tdiff , Xchem ×∆tchem} (5.33)

where ∆tdiff is the estimated time step for the heat conduction equation (e.g., equa-

tion (5.15) or (5.20)), and ∆tchem is the minimum time step estimated for the chemistry

solution. The parameter Xchem is a user-defined scale factor that typically has a value

between 10 and 100. When reactive processes are unimportant, the adaptive time in-

tegration in CHEMEQ will produce a chemistry time step that is relatively large and

equation (5.33) will allow the conduction solution to dictate the problem time scale. As

the reactive process accelerates, the chemistry time step will decrease significantly and

ultimately control the time step formula in equation (5.33). The transition point for

control of the global time step is dictated by the user through the Xchem parameter.

5.7 Phase Change Algorithms

The standard enthalpy method for including latent heat effects in a change of phase

problem was outlined in Section 2.2. The solution procedure consists of replacing the

specific heat for the material with an effective specific heat function that includes the

temperature-dependent latent heat release. In a form that is amenable to computation,

the effective specific heat is given by

C∗(T ) = C(T ) + Lδ∗(T − Tt, ∆T ) (5.34)

where δ∗ is the delta form function; δ∗ has a large but finite value in the interval centered

about Tt and is zero outside the interval. This equation is the computational analogue to

equation (2.13) and is illustrated in Figure 5.1. The interval ∆T is often referred to as the

“mushy” zone and corresponds to the difference between the liquidus, Tl, and solidus, Ts,

temperatures for the material. Note that (5.34) is thus an approximation for the behavior

of pure materials that change phase at a specified temperature, Tt, but is accurate for

nonpure substances that have truely distinct liquidus and solidus temperatures.

The effective capacitance model described above is available in COYOTE and rep-

resents the usual method for this type of simulation. However, some caution must be

exercised when generating time dependent solutions with this model. Since the transition

temperature interval, ∆T , is often small compared to the overall temperature variation

in the conduction problem, there are some severe practical limitations on the time in-

tegration procedure. In general, the time-stepping algorithm must be controlled such

that every node that “changes phase” is forced to attain a temperature value in the in-

terval bracketed by ∆T . If a nodal point does not “land” in the ∆T range but, simply
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Figure 5.1: Definition of material properties for phase change computation.
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steps over this temperature interval, the latent heat effect is lost for that node and an

incorrect temperature response and energy balance will result. Methods for dealing with

this difficulty include broadening the ∆T range and placing a limit on the maximum

temperature change that can occur during a time step. Integration time step control,

based on limiting the temperature change, is available in COYOTE as an option.

Alternatives to the methods based on specific heat make use of the enthalpy, H, versus

temperature curve for the phase change material and compute an effective specific heat

based on the local slope of the enthalpy function. In one case, the following definition is

used

Cp =
dH

dT
=

dH/dt

dT/dt
(5.35)

which can be rewritten in a computational form as

Cp =
H(T n+1)−H(T n)

T n+1 − T n
(5.36)

where the superscript denotes the time step number. Equation (5.36) can be evaluated

at each element integration point to produce the effective specific heat needed for the

construction of the element integrals. For situations where the denominator in (5.36) is

zero, an artificial temperature difference is created to allow the derivative to be evaluated.

Note that this approach has the same type of time step restrictions as the previous,

capacitance-based method. A second method that employs the enthalpy function is

defined by using spatial gradients in place of the time derivatives in (5.35). In this case

the enthalpy is first computed at the nodes of the element (knowing T ) and the effective

specific heat at the integration points is then recovered from

Cp =
[∇H · ∇H

∇T · ∇T

]1/2

(5.37)

where ∇H and ∇T are evaluated via the element shape functions. This technique will

maintain its accuracy as long as the phase boundary passes through each element and

does not skip over an element. Both of these enthalpy-based methods are available in

COYOTE.

A final method for simulating latent heat release involves the construction of a tem-

perature dependent, volumetric heat source. From equation (5.34) the term involving

the latent heat can be transferred to the right-hand-side of the energy equation (2.1) to

produce a volumetric source term of the form

Qlh = −ρLδ∗(T − Tt, ∆T )
∂T

∂t
(5.38)

The definition of δ∗ indicates that the volume source is only active during the phase

change and has a magnitude proportional to the latent heat release. The presence of
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the time derivative in the source definition complicates the solution process and would

generally lead to the source term be lagged in time. This type of phase change model

could be used in COYOTE through proper definition of the source term, but is not

recommended.

5.8 Contact Algorithm

The heat transfer aspects of contact between two material regions were considered in

Section 4.10.3 where a surface flux vector was developed based on the identification of a

master and slave surface. However, before this fomulation can be utilized, the geometric

properties associated with the contact conditions must be determined. Contact detection

involves identifying the time at which contact (or separation) occurs and the location

(coordinates) of the slave nodes on the master surface. COYOTE II employs a contact

detection algorithm that was initially developed for use in solid mechanics finite element

codes [32]. The use of these specific techniques allows coupled, thermal-stress problems

with contact surfaces to be simulated with a completely consistent approach.

Two specific types of contact are considered in COYOTE and these differ only in

the method of defining potential contacting surfaces. For problems in which a contact

history is known, COYOTE allows contacting surface pairs to be specifically identified.

In this case, the search for slave node locations on a master surface is limited exclusively

to the paired surface. This option is most effective for static contact and predefined

sliding or normal contact. A more general option in COYOTE allows multiple surfaces

and/or blocks of elements to be defined such that arbitrary combinations of surface con-

tacts may occur. This situation requires a more global search for slave node locations

since contacting surface pairs are not predefined. The general nature of this specification

allows the kinematics of the various material regions to dictate the occurrence of contact.

Also, problems involving self contact (e.g., buckling or folding) may be considered as

well as simulations with surfaces that evolve in time (e.g., tearing, material addition and

deletion). Note that since COYOTE considers only the energy equation and has no facil-

ities for momentum or force computations, the kinematics specified for a problem must

be consistent with any contact processes that occur. In particular, situations involving

penetration and deformation of contacting regions are expected to be resolved by a solid

mechanics code before being passed to COYOTE.

The global search procedures used to detect contact and locate the coordinates for

a slave node on a master surface are detailed in [32]. This reference also describes the

facility to continually redefine the exterior surface of a finite element region for problems



62 CHAPTER 5. SOLUTION PROCEDURES

involving material addition and deletion. The subroutines developed for the algorithms

defined in [32] have been directly incorporated into COYOTE.



Chapter 6

Pre- and Post-Processing

The COYOTE program was designed to be a self-contained analysis package with the

necessary options to set up a problem, solve for the required dependent variables and

analyze the resultant solution in terms of derived quantitites. The present chapter doc-

uments some of the numerical procedures used in the pre-solution and data analysis

chapters of the program.

6.1 Mesh Generation

COYOTE contains no mesh generation capability and relies completely on external mesh

generation software for a geometric description of the problem. The code reads mesh gen-

eration data from a standard format file called EXODUS II [33]. A complete description

of the mesh generation interface to COYOTE is available in the user’s manual [4].

6.2 Flux Computation

The thermal fluxes associated with the conduction equation can be computed in COY-

OTE on an element-by-element basis. Fourier’s law provides the definition of the con-

ductive heat flux as

qx = −kxx
∂T

∂x
− kxy

∂T

∂y
− kxz

∂T

∂z

qy = −kyx
∂T

∂x
− kyy

∂T

∂y
− kyz

∂T

∂z
(6.1)
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qz = −kzx
∂T

∂x
− kzy

∂T

∂y
− kzz

∂T

∂z

The component fluxes in (6.1) are computed by using the standard finite element ap-

proximations for T ,

T (xi, t) = ΘT (xi)T(t)

and the relations for the local temperature derivatives as derived in Section 4.8. That is,

∂Θ
∂x

∂Θ
∂y

∂Θ
∂z


= J−1



∂Θ
∂s

∂Θ
∂t

∂Θ
∂r


=

1

|J|



J11 J12 J13

J21 J22 J23

J31 J32 J33





∂Θ
∂s

∂Θ
∂t

∂Θ
∂r


Using these definitions the flux components become

qx = −kxx
|J|

(
J11

∂ΘT

∂s
T + J12

∂ΘT

∂t
T + J13

∂ΘT

∂r
T

)

−kxy
|J|

(
J21

∂ΘT

∂s
T + J22

∂ΘT

∂t
T + J23

∂ΘT

∂r
T

)

−kxz
|J|

(
J31

∂ΘT

∂s
T + J32

∂ΘT

∂t
T + J33

∂ΘT

∂r
T

)

qy = −kyx
|J|

(
J11

∂ΘT

∂s
T + J12

∂ΘT

∂t
T + J13

∂ΘT

∂r
T

)

− kyy
|J|

(
J21

∂ΘT

∂s
T + J22

∂ΘT

∂t
T + J23

∂ΘT

∂r
T

)
(6.2)

−kyz
|J|

(
J31

∂ΘT

∂s
T + J32

∂ΘT

∂t
T + J33

∂ΘT

∂r
T

)

qz = −kzx
|J|

(
J11

∂ΘT

∂s
T + J12

∂ΘT

∂t
T + J13

∂ΘT

∂r
T

)

−kzy
|J|

(
J21

∂ΘT

∂s
T + J22

∂ΘT

∂t
T + J23

∂ΘT

∂r
T

)

−kzz
|J|

(
J31

∂ΘT

∂s
T + J32

∂ΘT

∂t
T + J33

∂ΘT

∂r
T

)
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In addition to the local components of the flux vector, the heat flux normal to the

surface (edge) is often of importance. By definition

qn = q · n

q = qxex + qyey + qzez (6.3)

n = nxex + nyey + nzez

and thus

qn = qxnx + qyny + qznz. (6.4)

In order to employ (6.4), the components of the normal vector are required. These are

obtained from the surface vectors e1 and e2 given by

e1 =



∂x
∂ss

∂y
∂ss

∂z
∂ss


; e2 =



∂x
∂ts

∂y
∂ts

∂z
∂ts


which were previously defined in Section 4.10.2. These vectors are related to the unit

normal n by

n =
e1 × e2

|Js|
where |Js| is defined in (4.38) as |e1 × e2|.

The definitions in (6.2) are sufficient to define the flux components at any point

s0, t0, r0 within an element. In COYOTE the flux components are evaluated in the interior

of each element at selected integration points. For quadrilateral and hexahedral elements

the selected interior points are typically the 2× 2× 2 Gauss points as recommended by

[34]. Other element types also have recommended interior points for accurate derivative

computations. Note that fluxes computed from temperature gradients are discontinuous

between elements. To produce a continuous flux distribution, the integration point flux

values are linearly extrapolated to the nodes of each element and averaged between all

connected elements. Flux components can also be combined with the definition in (6.4)

to generate the normal flux on the element surface (edge); fluxes normal to the element

surface (edge) may be integrated over the boundary to define the total energy transfer

to or from the element.

6.3 Heat Flow Function

For two-dimensional problems, Kimura and Bejan [35] have proposed the use of a heat

flow function to assist in the visualization of energy transport. The heat function is
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directly analogous to the stream function for incompressible fluid flow and is constructed

to satisfy the steady, source free form of the energy equation. In formal terms, the heat

function H is the remaining nonzero component of a vector potential that identically

satisfies a form of equation (2.1). By definition

q1 = qx = ρCuxT − k
∂T

∂x
=

∂H
∂y

q2 = qy = ρCuyT − k
∂T

∂y
= −∂H

∂x
(6.5)

where the flux components have been defined as the total of the convective and diffusive

fluxes. For simplicity the definitions in (6.5) have also assumed an isotropic conductivity

though this is not a required restriction. In the usual applications considered here, the

velocities in (6.5) will be zero and the heat function will reduce to a definition for a heat

flux line, i.e. a line that is everywhere tangent to the local flux vector. The change in

the heat function is an exact differential such that

δH =
∫ B

A
q · n dΓ (6.6)

q = qxex + qyey

n = nxex + nyey

where n is the normal to the integration path dΓ, q is the total flux vector along the

path and ei are unit vectors in the coordinate directions.

The calculation of the change in the heat function within a finite element can be

carried out using (6.6) once a suitable integration path AB is identified. In COYOTE

the integration path is taken along the two-dimensional element boundaries. Consider

the typical element boundary shown in Figure 6.1 with the following definitions

qx = Φ̂Tqx ; qy = Φ̂Tqy

x = Υ̂Tx ; y = Υ̂Ty (6.7)

where Φ̂ and Υ̂ are interpolation (edge) functions and qx, qy, x, y are vectors of nodal

point fluxes and coordinates. The normal vector is given by

n =
1

∆

∂y

∂s
ex −

1

∆

∂x

∂s
ey (6.8)

with dΓ defined in the usual way by

dΓ =

(∂x

∂s

)2

+

(
∂y

∂s

)2
 1

2

ds
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Figure 6.1: Definition of element boundary for heat function computation.

or using the definitions of (6.7)

dΓ =


∂Υ̂

∂s

T

x

2

+

∂Υ̂

∂s

T

y

2


1
2

ds = ∆ ds.

Combining these relations with the definition for δH produces

δH =
∫ +1

−1

∂Υ̂

∂s

T

y Φ̂Tqx −
∂Υ̂

∂s

T

x Φ̂Tqy

 ds. (6.9)

The interpolation function definitions were described previously in Section 4.10.2; the

function Υ̂ can be either linear or quadratic depending on the shape of the element

boundary. The change in the heat function along any element boundary can be computed

from (6.9) once the element geometry, velocity and temperature fields are specified; the

fluxes needed in (6.9) are derived from the definitions in (6.7) and the formulas outlined in

the previous chapter. Computation of the heat function field for an entire finite element

mesh is generated by applying (6.9) along successive element boundaries, starting at a

node for which a base value of H has been specified.

The calculation of the heat function for axisymmetric geometries follows a similar
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procedure with the appropriate definition for H being,

q1 = qr =
1

r

∂H
∂z

; q2 = qz = −1

r

∂H
∂r

(6.10)

and

q = qrr er + qzr ez

n = nrer + nzez.

6.4 Gas Fraction

For thermal problems with chemical reaction, the reacted gas fraction can be computed

from (2.25). For a coupled thermo-mechanical analysis, the gas fraction may be an input

variable to the constitutive model for the reacting material.

6.5 Graphical Output

COYOTE contains no graphics capability and relies completely on external visualization

software. The code outputs solution data in a standard format file called EXODUS II

[33] that can be accessed by any of several graphics packages, such as the BLOT code

[36] or the AVS [37] software. Details of the output file are available in [4].
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